forked from mindspore-Ecosystem/mindspore
!3050 Add TBE ops Tan/TruncateDiv/TruncateMod for VM.
Merge pull request !3050 from liuxiao93/Tan/TruncateDiv/TruncateMOd
This commit is contained in:
commit
eeba046115
|
@ -306,6 +306,34 @@ def get_bprop_floormod(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.TruncateDiv)
|
||||
def get_bprop_truncate_div(self):
|
||||
"""Grad definition for `TruncateDiv` operation."""
|
||||
div_op = P.TruncateDiv()
|
||||
neg = P.Neg()
|
||||
mul_op = P.Mul()
|
||||
|
||||
def bprop(x, y, out, dout):
|
||||
bc_x = div_op(dout, y)
|
||||
bc_y = neg(mul_op(bc_x, out))
|
||||
return binop_grad_common(x, y, bc_x, bc_y)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.TruncateMod)
|
||||
def get_bprop_truncate_mod(self):
|
||||
"""Grad definition for `TruncateMod` operation."""
|
||||
div_op = P.TruncateDiv()
|
||||
|
||||
def bprop(x, y, out, dout):
|
||||
bc_x = dout
|
||||
bc_y = -dout * div_op(x, y)
|
||||
return binop_grad_common(x, y, bc_x, bc_y)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Mod)
|
||||
def get_bprop_mod(self):
|
||||
"""Grad definition for `Mod` operation."""
|
||||
|
@ -1027,6 +1055,22 @@ def get_bprop_atan(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Tan)
|
||||
def get_bprop_tan(self):
|
||||
"""Grad definition for `Tan` operation."""
|
||||
reciprocal = P.Reciprocal()
|
||||
square = P.Square()
|
||||
cos = P.Cos()
|
||||
|
||||
def bprop(x, out, dout):
|
||||
cosx = cos(x)
|
||||
secx2 = square(reciprocal(cosx))
|
||||
dx = secx2 * dout
|
||||
return (dx,)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.BesselI1e)
|
||||
def get_bprop_bessel_i1e(self):
|
||||
"""Generate bprop for BesselI1e"""
|
||||
|
|
|
@ -132,6 +132,8 @@ from .sparse_apply_ftrl_d import _sparse_apply_ftrl_d
|
|||
from .sparse_apply_proximal_adagrad import _sparse_apply_proximal_adagrad
|
||||
from .apply_proximal_adagrad import _apply_proximal_adagrad
|
||||
from .transpose_d import _transpose_d_tbe
|
||||
from .truncate_div import _truncate_div_tbe
|
||||
from .truncate_mod import _truncate_mod_tbe
|
||||
from .unsorted_segment_sum import _unsorted_segment_sum_tbe
|
||||
from .unsorted_segment_prod import _unsorted_segment_prod_tbe
|
||||
from .logsoftmax_grad import _logsoftmax_grad_tbe
|
||||
|
@ -222,6 +224,7 @@ from .binary_cross_entropy import _binary_cross_entropy_tbe
|
|||
from .binary_cross_entropy_grad import _binary_cross_entropy_grad_tbe
|
||||
from .sin import _sin_tbe
|
||||
from .cos import _cos_tbe
|
||||
from .tan import _tan_tbe
|
||||
from .cum_sum import _cum_sum_tbe
|
||||
from .apply_rms_prop import _apply_rms_prop_tbe
|
||||
from .cumprod import _cumprop_tbe
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Tan op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
tan_op_info = TBERegOp("Tan") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("tan.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("tan") \
|
||||
.partial_flag(True) \
|
||||
.op_pattern("formatAgnostic") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_None, DataType.F16_None) \
|
||||
.dtype_format(DataType.F32_None, DataType.F32_None) \
|
||||
.dtype_format(DataType.I32_None, DataType.I32_None) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(tan_op_info)
|
||||
def _tan_tbe():
|
||||
"""Tan TBE register"""
|
||||
return
|
|
@ -0,0 +1,41 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""TruncateDiv op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
truncate_div_op_info = TBERegOp("TruncateDiv") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("truncate_div.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("truncate_div") \
|
||||
.partial_flag(True) \
|
||||
.op_pattern("broadcast") \
|
||||
.input(0, "x1", False, "required", "all") \
|
||||
.input(1, "x2", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_None, DataType.F16_None, DataType.F16_None) \
|
||||
.dtype_format(DataType.F32_None, DataType.F32_None, DataType.F32_None) \
|
||||
.dtype_format(DataType.I32_None, DataType.I32_None, DataType.I32_None) \
|
||||
.dtype_format(DataType.I8_None, DataType.I8_None, DataType.I8_None) \
|
||||
.dtype_format(DataType.U8_None, DataType.U8_None, DataType.U8_None) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(truncate_div_op_info)
|
||||
def _truncate_div_tbe():
|
||||
"""TruncateDiv TBE register"""
|
||||
return
|
|
@ -0,0 +1,41 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""TruncateMod op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
truncate_mod_op_info = TBERegOp("TruncateMod") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("truncate_mod.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("truncate_mod") \
|
||||
.partial_flag(True) \
|
||||
.op_pattern("broadcast") \
|
||||
.input(0, "x1", False, "required", "all") \
|
||||
.input(1, "x2", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_None, DataType.F16_None, DataType.F16_None) \
|
||||
.dtype_format(DataType.F32_None, DataType.F32_None, DataType.F32_None) \
|
||||
.dtype_format(DataType.I32_None, DataType.I32_None, DataType.I32_None) \
|
||||
.dtype_format(DataType.I8_None, DataType.I8_None, DataType.I8_None) \
|
||||
.dtype_format(DataType.U8_None, DataType.U8_None, DataType.U8_None) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(truncate_mod_op_info)
|
||||
def _truncate_mod_tbe():
|
||||
"""TruncateMod TBE register"""
|
||||
return
|
|
@ -52,8 +52,8 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
|
|||
NPUAllocFloatStatus, NPUClearFloatStatus,
|
||||
NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus,
|
||||
Reciprocal, CumSum, HistogramFixedWidth,
|
||||
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e,
|
||||
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps)
|
||||
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod,
|
||||
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan)
|
||||
|
||||
from .random_ops import (RandomChoiceWithMask, Normal)
|
||||
from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm,
|
||||
|
@ -267,6 +267,8 @@ __all__ = [
|
|||
'SigmoidCrossEntropyWithLogits',
|
||||
'FloorDiv',
|
||||
'FloorMod',
|
||||
'TruncateDiv',
|
||||
'TruncateMod',
|
||||
'Ceil',
|
||||
'Acosh',
|
||||
'Asinh',
|
||||
|
@ -323,6 +325,7 @@ __all__ = [
|
|||
"BesselI1e",
|
||||
"Atan",
|
||||
"Atanh",
|
||||
"Tan",
|
||||
"BasicLSTMCell",
|
||||
"BroadcastTo",
|
||||
"DataFormatDimMap",
|
||||
|
|
|
@ -1744,6 +1744,65 @@ class FloorDiv(_MathBinaryOp):
|
|||
"""
|
||||
|
||||
|
||||
class TruncateDiv(_MathBinaryOp):
|
||||
"""
|
||||
Divide the first input tensor by the second input tensor element-wise for integer types, negative numbers will
|
||||
round fractional quantities towards zero.
|
||||
|
||||
The inputs must be two tensors or one tensor and one scalar.
|
||||
When the inputs are two tensors,
|
||||
both dtypes cannot be bool, and the shapes of them could be broadcast.
|
||||
When the inputs are one tensor and one scalar,
|
||||
the scalar only could be a constant.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
|
||||
a bool or a tensor whose data type is number or bool.
|
||||
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
|
||||
a bool when the first input is a tensor or a tensor whose data type is number or bool.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape is same as the shape after broadcasting,
|
||||
and the data type is the one with high precision or high digits among the two inputs.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
|
||||
>>> truncate_div = P.TruncateDiv()
|
||||
>>> truncate_div(input_x, input_y)
|
||||
[0, 1, 0]
|
||||
"""
|
||||
|
||||
|
||||
class TruncateMod(_MathBinaryOp):
|
||||
"""
|
||||
Returns element-wise remainder of division.
|
||||
|
||||
The inputs must be two tensors or one tensor and one scalar.
|
||||
When the inputs are two tensors,
|
||||
both dtypes cannot be bool, and the shapes of them could be broadcast.
|
||||
When the inputs are one tensor and one scalar,
|
||||
the scalar only could be a constant.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Union[Tensor, Number, bool]) - The first input is a number or
|
||||
a bool or a tensor whose data type is number or bool.
|
||||
- **input_y** (Union[Tensor, Number, bool]) - The second input is a number or
|
||||
a bool when the first input is a tensor or a tensor whose data type is number or bool.
|
||||
|
||||
Outputs:
|
||||
Tensor, the shape is same as the shape after broadcasting,
|
||||
and the data type is the one with high precision or high digits among the two inputs.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32)
|
||||
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32)
|
||||
>>> truncate_mod = P.TruncateMod()
|
||||
>>> truncate_mod(input_x, input_y)
|
||||
[2, 1, -1]
|
||||
"""
|
||||
|
||||
|
||||
class Mod(_MathBinaryOp):
|
||||
"""
|
||||
Computes the remainder of dividing the first input tensor by the second input tensor element-wise.
|
||||
|
@ -2870,6 +2929,34 @@ class Round(PrimitiveWithInfer):
|
|||
return x_type
|
||||
|
||||
|
||||
class Tan(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes tan of `input_x` element-wise.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape as `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> tan = P.Tan()
|
||||
>>> input_x = Tensor(np.array([-1.0, 0.0, 1.0]), mindspore.float32)
|
||||
>>> output = tan(input_x)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init Tan"""
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_type):
|
||||
validator.check_tensor_type_same({'x': x_type}, mstype.number_type, self.name)
|
||||
return x_type
|
||||
|
||||
|
||||
class Atan(PrimitiveWithInfer):
|
||||
"""
|
||||
Computes the trignometric inverse tangent of x element-wise.
|
||||
|
|
|
@ -766,6 +766,10 @@ test_case_math_ops = [
|
|||
'block': P.Asinh(),
|
||||
'desc_inputs': [[3, 4, 5]],
|
||||
'desc_bprop': [[3, 4, 5]]}),
|
||||
('Tan', {
|
||||
'block': P.Tan(),
|
||||
'desc_inputs': [[2, 3]],
|
||||
'desc_bprop': [[2, 3]]}),
|
||||
('Reciprocal', {
|
||||
'block': P.Reciprocal(),
|
||||
'desc_inputs': [[2, 3, 3, 5]],
|
||||
|
@ -852,6 +856,14 @@ test_case_math_ops = [
|
|||
'block': P.FloorMod(),
|
||||
'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
|
||||
'desc_bprop': [[2, 3, 4, 5]]}),
|
||||
('TruncateDiv', {
|
||||
'block': P.TruncateDiv(),
|
||||
'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
|
||||
'desc_bprop': [[2, 3, 4, 5]]}),
|
||||
('TruncateMod', {
|
||||
'block': P.TruncateMod(),
|
||||
'desc_inputs': [[3, 4, 5], [2, 3, 4, 5]],
|
||||
'desc_bprop': [[2, 3, 4, 5]]}),
|
||||
('identity', {
|
||||
'block': ops.functional.identity,
|
||||
'desc_inputs': [[2, 2]],
|
||||
|
|
Loading…
Reference in New Issue