forked from mindspore-Ecosystem/mindspore
!3532 fix python api doc for mindspore .dataset
Merge pull request !3532 from guansongsong/gss_fix_api
This commit is contained in:
commit
eeb8d72ac9
|
@ -27,7 +27,7 @@ def mstype_to_detype(type_):
|
|||
Get de data type corresponding to mindspore dtype.
|
||||
|
||||
Args:
|
||||
type_ (:class:`mindspore.dtype`): MindSpore's dtype.
|
||||
type_ (mindspore.dtype): MindSpore's dtype.
|
||||
|
||||
Returns:
|
||||
The data type of de.
|
||||
|
@ -57,7 +57,7 @@ def mstypelist_to_detypelist(type_list):
|
|||
Get list[de type] corresponding to list[mindspore.dtype].
|
||||
|
||||
Args:
|
||||
type_list (:list[mindspore.dtype]): a list of MindSpore's dtype.
|
||||
type_list (list[mindspore.dtype]): a list of MindSpore's dtype.
|
||||
|
||||
Returns:
|
||||
The list of de data type.
|
||||
|
|
|
@ -155,8 +155,8 @@ def parse_user_args(method, *args, **kwargs):
|
|||
|
||||
Args:
|
||||
method (method): a callable function.
|
||||
*args: user passed args.
|
||||
**kwargs: user passed kwargs.
|
||||
args: user passed args.
|
||||
kwargs: user passed kwargs.
|
||||
|
||||
Returns:
|
||||
user_filled_args (list): values of what the user passed in for the arguments.
|
||||
|
@ -181,9 +181,9 @@ def type_check_list(args, types, arg_names):
|
|||
Check the type of each parameter in the list.
|
||||
|
||||
Args:
|
||||
args (list, tuple): a list or tuple of any variable.
|
||||
args (Union[list, tuple]): a list or tuple of any variable.
|
||||
types (tuple): tuple of all valid types for arg.
|
||||
arg_names (list, tuple of str): the names of args.
|
||||
arg_names (Union[list, tuple of str]): the names of args.
|
||||
|
||||
Returns:
|
||||
Exception: when the type is not correct, otherwise nothing.
|
||||
|
@ -202,7 +202,7 @@ def type_check(arg, types, arg_name):
|
|||
Check the type of the parameter.
|
||||
|
||||
Args:
|
||||
arg : any variable.
|
||||
arg (Any) : any variable.
|
||||
types (tuple): tuple of all valid types for arg.
|
||||
arg_name (str): the name of arg.
|
||||
|
||||
|
@ -346,7 +346,7 @@ def check_gnn_list_or_ndarray(param, param_name):
|
|||
Check if the input parameter is list or numpy.ndarray.
|
||||
|
||||
Args:
|
||||
param (list, nd.ndarray): param.
|
||||
param (Union[list, nd.ndarray]): param.
|
||||
param_name (str): param_name.
|
||||
|
||||
Returns:
|
||||
|
|
|
@ -188,13 +188,13 @@ class Dataset:
|
|||
except for maybe the last batch for each bucket.
|
||||
|
||||
Args:
|
||||
column_names (list of string): Columns passed to element_length_function.
|
||||
bucket_boundaries (list of int): A list consisting of the upper boundaries
|
||||
column_names (list[str]): Columns passed to element_length_function.
|
||||
bucket_boundaries (list[int]): A list consisting of the upper boundaries
|
||||
of the buckets. Must be strictly increasing. If there are n boundaries,
|
||||
n+1 buckets are created: One bucket for [0, bucket_boundaries[0]), one
|
||||
bucket for [bucket_boundaries[i], bucket_boundaries[i+1]) for each
|
||||
0<i<n, and one bucket for [bucket_boundaries[n-1], inf).
|
||||
bucket_batch_sizes (list of int): A list consisting of the batch sizes for
|
||||
bucket_batch_sizes (list[int]): A list consisting of the batch sizes for
|
||||
each bucket. Must contain len(bucket_boundaries)+1 elements.
|
||||
element_length_function (Callable, optional): A function that takes in
|
||||
len(column_names) arguments and returns an int. If no value is
|
||||
|
@ -269,7 +269,7 @@ class Dataset:
|
|||
(list[Tensor], list[Tensor], ..., BatchInfo) as input parameters. Each list[Tensor] represent a batch of
|
||||
Tensors on a given column. The number of lists should match with number of entries in input_columns. The
|
||||
last parameter of the callable should always be a BatchInfo object.
|
||||
input_columns (list of string, optional): List of names of the input columns. The size of the list should
|
||||
input_columns (list[str], optional): List of names of the input columns. The size of the list should
|
||||
match with signature of per_batch_map callable.
|
||||
pad_info (dict, optional): Whether to perform padding on selected columns. pad_info={"col1":([224,224],0)}
|
||||
would pad column with name "col1" to a tensor of size [224,224] and fill the missing with 0.
|
||||
|
@ -417,7 +417,7 @@ class Dataset:
|
|||
input columns expected by the first operator. (default=None, the first
|
||||
operation will be passed however many columns that is required, starting from
|
||||
the first column).
|
||||
operations (list[TensorOp] or Python list[functions]): List of operations to be
|
||||
operations (Union[list[TensorOp], list[functions]]): List of operations to be
|
||||
applied on the dataset. Operations are applied in the order they appear in this list.
|
||||
output_columns (list[str], optional): List of names assigned to the columns outputted by
|
||||
the last operation. This parameter is mandatory if len(input_columns) !=
|
||||
|
@ -724,7 +724,7 @@ class Dataset:
|
|||
called where ds is a MappableDataset.
|
||||
|
||||
Args:
|
||||
sizes (list of int or list of float): If a list of integers [s1, s2, …, sn] is
|
||||
sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, …, sn] is
|
||||
provided, the dataset will be split into n datasets of size s1, size s2, …, size sn
|
||||
respectively. If the sum of all sizes does not equal the original dataset size, an
|
||||
an error will occur.
|
||||
|
@ -806,7 +806,7 @@ class Dataset:
|
|||
Zip the datasets in the input tuple of datasets. Columns in the input datasets must not have the same name.
|
||||
|
||||
Args:
|
||||
datasets (tuple or class Dataset): A tuple of datasets or a single class Dataset
|
||||
datasets (Union[tuple, class Dataset]): A tuple of datasets or a single class Dataset
|
||||
to be zipped together with this dataset.
|
||||
|
||||
Returns:
|
||||
|
@ -835,7 +835,7 @@ class Dataset:
|
|||
The column name,column data type and rank of column data should be the same in input datasets.
|
||||
|
||||
Args:
|
||||
datasets (list or class Dataset): A list of datasets or a single class Dataset
|
||||
datasets (Union[list, class Dataset]): A list of datasets or a single class Dataset
|
||||
to be concatenated together with this dataset.
|
||||
|
||||
Returns:
|
||||
|
@ -1261,10 +1261,10 @@ class Dataset:
|
|||
|
||||
Args:
|
||||
condition_name (str): The condition name that is used to toggle sending next row.
|
||||
num_batch (int or None): The number of batches(rows) that are released.
|
||||
num_batch (Union[int, None]): The number of batches(rows) that are released.
|
||||
When num_batch is None, it will default to the number specified by the
|
||||
sync_wait operator (default=None).
|
||||
data (dict or None): The data passed to the callback (default=None).
|
||||
data (Union[dict, None]): The data passed to the callback (default=None).
|
||||
"""
|
||||
if isinstance(num_batch, int) and num_batch <= 0:
|
||||
# throwing exception, disable all sync_wait in pipeline
|
||||
|
@ -1343,7 +1343,7 @@ class SourceDataset(Dataset):
|
|||
Utility function to search for files with the given glob patterns.
|
||||
|
||||
Args:
|
||||
patterns (str or list[str]): string or list of patterns to be searched.
|
||||
patterns (Union[str, list[str]]): string or list of patterns to be searched.
|
||||
|
||||
Returns:
|
||||
List, files.
|
||||
|
@ -1445,7 +1445,7 @@ class MappableDataset(SourceDataset):
|
|||
that calls this function is a MappableDataset.
|
||||
|
||||
Args:
|
||||
sizes (list of int or list of float): If a list of integers [s1, s2, …, sn] is
|
||||
sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, …, sn] is
|
||||
provided, the dataset will be split into n datasets of size s1, size s2, …, size sn
|
||||
respectively. If the sum of all sizes does not equal the original dataset size, an
|
||||
an error will occur.
|
||||
|
@ -1593,7 +1593,7 @@ class BatchDataset(DatasetOp):
|
|||
|
||||
Args:
|
||||
input_dataset (Dataset): Input Dataset to be batched.
|
||||
batch_size (int or function): The number of rows each batch is created with. An
|
||||
batch_size (Union[int, function]): The number of rows each batch is created with. An
|
||||
int or callable which takes exactly 1 parameter, BatchInfo.
|
||||
drop_remainder (bool, optional): Determines whether or not to drop the last
|
||||
possibly incomplete batch (default=False). If True, and if there are less
|
||||
|
@ -1604,7 +1604,7 @@ class BatchDataset(DatasetOp):
|
|||
(list[Tensor], list[Tensor], ..., BatchInfo) as input parameters. Each list[Tensor] represent a batch of
|
||||
Tensors on a given column. The number of lists should match with number of entries in input_columns. The
|
||||
last parameter of the callable should always be a BatchInfo object.
|
||||
input_columns (list of string, optional): List of names of the input columns. The size of the list should
|
||||
input_columns (list[str], optional): List of names of the input columns. The size of the list should
|
||||
match with signature of per_batch_map callable.
|
||||
pad_info (dict, optional): Whether to perform padding on selected columns. pad_info={"col1":([224,224],0)}
|
||||
would pad column with name "col1" to a tensor of size [224,224] and fill the missing with 0.
|
||||
|
@ -2447,7 +2447,7 @@ def _select_sampler(num_samples, input_sampler, shuffle, num_shards, shard_id, n
|
|||
|
||||
Args:
|
||||
num_samples (int): Number of samples.
|
||||
input_sampler (Iterable / Sampler): Sampler from user.
|
||||
input_sampler (Union[Iterable, Sampler]): Sampler from user.
|
||||
shuffle (bool): Shuffle.
|
||||
num_shards (int): Number of shard for sharding.
|
||||
shard_id (int): Shard ID.
|
||||
|
@ -2786,7 +2786,7 @@ class MindDataset(MappableDataset):
|
|||
A source dataset that reads from shard files and database.
|
||||
|
||||
Args:
|
||||
dataset_file (str, list[str]): One of file names or file list in dataset.
|
||||
dataset_file (Union[str, list[str]]): One of file names or file list in dataset.
|
||||
columns_list (list[str], optional): List of columns to be read (default=None).
|
||||
num_parallel_workers (int, optional): The number of readers (default=None).
|
||||
shuffle (bool, optional): Whether or not to perform shuffle on the dataset
|
||||
|
@ -3158,7 +3158,7 @@ class GeneratorDataset(MappableDataset):
|
|||
- not allowed
|
||||
|
||||
Args:
|
||||
source (Callable/Iterable/Random Accessible):
|
||||
source (Union[Callable, Iterable, Random Accessible]):
|
||||
A generator callable object, an iterable python object or a random accessible python object.
|
||||
Callable source is required to return a tuple of numpy array as a row of the dataset on source().next().
|
||||
Iterable source is required to return a tuple of numpy array as a row of the dataset on iter(source).next().
|
||||
|
@ -3168,15 +3168,15 @@ class GeneratorDataset(MappableDataset):
|
|||
provide either column_names or schema.
|
||||
column_types (list[mindspore.dtype], optional): List of column data types of the dataset (default=None).
|
||||
If provided, sanity check will be performed on generator output.
|
||||
schema (Schema/str, optional): Path to the json schema file or schema object (default=None). Users are
|
||||
schema (Union[Schema, str], optional): Path to the json schema file or schema object (default=None). Users are
|
||||
required to provide either column_names or schema. If both are provided, schema will be used.
|
||||
num_samples (int, optional): The number of samples to be included in the dataset
|
||||
(default=None, all images).
|
||||
num_parallel_workers (int, optional): Number of subprocesses used to fetch the dataset in parallel (default=1).
|
||||
shuffle (bool, optional): Whether or not to perform shuffle on the dataset. Random accessible input is required.
|
||||
(default=None, expected order behavior shown in the table).
|
||||
sampler (Sampler/Iterable, optional): Object used to choose samples from the dataset. Random accessible input is
|
||||
required (default=None, expected order behavior shown in the table).
|
||||
sampler (Union[Sampler, Iterable], optional): Object used to choose samples from the dataset. Random accessible
|
||||
input is required (default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset should be divided into (default=None).
|
||||
When this argument is specified, 'num_samples' will not effect. Random accessible input is required.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This argument should be specified only
|
||||
|
@ -3328,9 +3328,9 @@ class TFRecordDataset(SourceDataset):
|
|||
A source dataset that reads and parses datasets stored on disk in TFData format.
|
||||
|
||||
Args:
|
||||
dataset_files (str or list[str]): String or list of files to be read or glob strings to search for a pattern of
|
||||
files. The list will be sorted in a lexicographical order.
|
||||
schema (str or Schema, optional): Path to the json schema file or schema object (default=None).
|
||||
dataset_files (Union[str, list[str]]): String or list of files to be read or glob strings to search for a
|
||||
pattern of files. The list will be sorted in a lexicographical order.
|
||||
schema (Union[str, Schema], optional): Path to the json schema file or schema object (default=None).
|
||||
If the schema is not provided, the meta data from the TFData file is considered the schema.
|
||||
columns_list (list[str], optional): List of columns to be read (default=None, read all columns)
|
||||
num_samples (int, optional): number of samples(rows) to read (default=None).
|
||||
|
@ -3339,7 +3339,8 @@ class TFRecordDataset(SourceDataset):
|
|||
If both num_samples and numRows(parsed from schema) are greater than 0, read num_samples rows.
|
||||
num_parallel_workers (int, optional): number of workers to read the data
|
||||
(default=None, number set in the config).
|
||||
shuffle (bool, Shuffle level, optional): perform reshuffling of the data every epoch (default=Shuffle.GLOBAL).
|
||||
shuffle (Union[bool, Shuffle level], optional): perform reshuffling of the data every epoch
|
||||
(default=Shuffle.GLOBAL).
|
||||
If shuffle is False, no shuffling will be performed;
|
||||
If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL
|
||||
Otherwise, there are two levels of shuffling:
|
||||
|
@ -3920,7 +3921,7 @@ class RandomDataset(SourceDataset):
|
|||
|
||||
Args:
|
||||
total_rows (int): number of rows for the dataset to generate (default=None, number of rows is random)
|
||||
schema (str or Schema, optional): Path to the json schema file or schema object (default=None).
|
||||
schema (Union[str, Schema], optional): Path to the json schema file or schema object (default=None).
|
||||
If the schema is not provided, the random dataset generates a random schema.
|
||||
columns_list (list[str], optional): List of columns to be read (default=None, read all columns)
|
||||
num_samples (int): number of samples to draw from the total. (default=None, which means all rows)
|
||||
|
@ -4097,7 +4098,7 @@ class Schema:
|
|||
Parse the columns and add it to self.
|
||||
|
||||
Args:
|
||||
columns (dict or list[dict]): dataset attribution information, decoded from schema file.
|
||||
columns (Union[dict, list[dict]]): dataset attribution information, decoded from schema file.
|
||||
|
||||
- list[dict], 'name' and 'type' must be in keys, 'shape' optional.
|
||||
|
||||
|
@ -4710,7 +4711,7 @@ class CLUEDataset(SourceDataset):
|
|||
}
|
||||
|
||||
Args:
|
||||
dataset_files (str or a list of strings): String or list of files to be read or glob strings to search for
|
||||
dataset_files (Union[str, list[str]]): String or list of files to be read or glob strings to search for
|
||||
a pattern of files. The list will be sorted in a lexicographical order.
|
||||
task (str, optional): The kind of task, one of 'AFQMC', 'TNEWS', 'IFLYTEK', 'CMNLI', 'WSC' and 'CSL'.
|
||||
(default=AFQMC).
|
||||
|
@ -4718,7 +4719,8 @@ class CLUEDataset(SourceDataset):
|
|||
num_samples (int, optional): number of samples(rows) to read (default=None, reads the full dataset).
|
||||
num_parallel_workers (int, optional): number of workers to read the data
|
||||
(default=None, number set in the config).
|
||||
shuffle (bool, Shuffle level, optional): perform reshuffling of the data every epoch (default=Shuffle.GLOBAL).
|
||||
shuffle (Union[bool, Shuffle level], optional): perform reshuffling of the data every epoch
|
||||
(default=Shuffle.GLOBAL).
|
||||
If shuffle is False, no shuffling will be performed;
|
||||
If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL
|
||||
Otherwise, there are two levels of shuffling:
|
||||
|
@ -4923,18 +4925,19 @@ class CSVDataset(SourceDataset):
|
|||
A source dataset that reads and parses CSV datasets.
|
||||
|
||||
Args:
|
||||
dataset_files (str or a list of strings): String or list of files to be read or glob strings to search
|
||||
dataset_files (Union[str, list[str]]): String or list of files to be read or glob strings to search
|
||||
for a pattern of files. The list will be sorted in a lexicographical order.
|
||||
field_delim (str, optional): A string that indicates the char delimiter to separate fields (default=',').
|
||||
column_defaults (list, optional): List of default values for the CSV field (default=None). Each item
|
||||
in the list is either a valid type (float, int, or string). If this is not provided, treats all
|
||||
columns as string type.
|
||||
column_names (list of string, optional): List of column names of the dataset (default=None). If this
|
||||
column_names (list[str], optional): List of column names of the dataset (default=None). If this
|
||||
is not provided, infers the column_names from the first row of CSV file.
|
||||
num_samples (int, optional): number of samples(rows) to read (default=None, reads the full dataset).
|
||||
num_parallel_workers (int, optional): number of workers to read the data
|
||||
(default=None, number set in the config).
|
||||
shuffle (bool, Shuffle level, optional): perform reshuffling of the data every epoch (default=Shuffle.GLOBAL).
|
||||
shuffle (Union[bool, Shuffle level], optional): perform reshuffling of the data every epoch
|
||||
(default=Shuffle.GLOBAL).
|
||||
If shuffle is False, no shuffling will be performed;
|
||||
If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL
|
||||
Otherwise, there are two levels of shuffling:
|
||||
|
@ -5026,12 +5029,13 @@ class TextFileDataset(SourceDataset):
|
|||
The generated dataset has one columns ['text'].
|
||||
|
||||
Args:
|
||||
dataset_files (str or list[str]): String or list of files to be read or glob strings to search for a pattern of
|
||||
files. The list will be sorted in a lexicographical order.
|
||||
dataset_files (Union[str, list[str]]): String or list of files to be read or glob strings to search for a
|
||||
pattern of files. The list will be sorted in a lexicographical order.
|
||||
num_samples (int, optional): number of samples(rows) to read (default=None, reads the full dataset).
|
||||
num_parallel_workers (int, optional): number of workers to read the data
|
||||
(default=None, number set in the config).
|
||||
shuffle (bool, Shuffle level, optional): perform reshuffling of the data every epoch (default=Shuffle.GLOBAL).
|
||||
shuffle (Union[bool, Shuffle level], optional): perform reshuffling of the data every epoch
|
||||
(default=Shuffle.GLOBAL).
|
||||
If shuffle is False, no shuffling will be performed;
|
||||
If shuffle is True, the behavior is the same as setting shuffle to be Shuffle.GLOBAL
|
||||
Otherwise, there are two levels of shuffling:
|
||||
|
@ -5212,17 +5216,17 @@ class NumpySlicesDataset(GeneratorDataset):
|
|||
- not allowed
|
||||
|
||||
Args:
|
||||
data (list, tuple or dict) Input of Given data, supported data type includes list, tuple, dict and other numpy
|
||||
format. Input data will be sliced in first dimension and generate many rows, large data is not recommend to
|
||||
load in this way as data is loading into memory.
|
||||
data (Union[list, tuple, dict]) Input of Given data, supported data type includes list, tuple, dict and other
|
||||
numpy format. Input data will be sliced in first dimension and generate many rows, large data is not
|
||||
recommend to load in this way as data is loading into memory.
|
||||
column_names (list[str], optional): List of column names of the dataset (default=None). If column_names not
|
||||
provided, when data is dict, column_names will be its key, otherwise it will be like column_1, column_2 ...
|
||||
num_samples (int, optional): The number of samples to be included in the dataset (default=None, all images).
|
||||
num_parallel_workers (int, optional): Number of subprocesses used to fetch the dataset in parallel (default=1).
|
||||
shuffle (bool, optional): Whether or not to perform shuffle on the dataset. Random accessible input is required.
|
||||
(default=None, expected order behavior shown in the table).
|
||||
sampler (Sampler/Iterable, optional): Object used to choose samples from the dataset. Random accessible input is
|
||||
required (default=None, expected order behavior shown in the table).
|
||||
sampler (Union[Sampler, Iterable], optional): Object used to choose samples from the dataset. Random accessible
|
||||
input is required (default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset should be divided into (default=None).
|
||||
When this argument is specified, 'num_samples' will not effect. Random accessible input is required.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This argument should be specified only
|
||||
|
@ -5263,8 +5267,8 @@ class BuildVocabDataset(DatasetOp):
|
|||
|
||||
Args:
|
||||
vocab(Vocab): text.vocab object.
|
||||
columns(str or list, optional): column names to get words from. It can be a list of column names (Default is
|
||||
None, all columns are used, return error if any column isn't string).
|
||||
columns(Union[str, list], optional): column names to get words from. It can be a list of column names (Default
|
||||
is None, all columns are used, return error if any column isn't string).
|
||||
freq_range(tuple, optional): A tuple of integers (min_frequency, max_frequency). Words within the frequency
|
||||
range would be kept. 0 <= min_frequency <= max_frequency <= total_words. min_frequency/max_frequency
|
||||
can be None, which corresponds to 0/total_words separately (default=None, all words are included).
|
||||
|
|
|
@ -91,7 +91,7 @@ class GraphData:
|
|||
Get nodes from the edges.
|
||||
|
||||
Args:
|
||||
edge_list (list or numpy.ndarray): The given list of edges.
|
||||
edge_list (Union[list, numpy.ndarray]): The given list of edges.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: array of nodes.
|
||||
|
@ -107,7 +107,7 @@ class GraphData:
|
|||
Get `neighbor_type` neighbors of the nodes in `node_list`.
|
||||
|
||||
Args:
|
||||
node_list (list or numpy.ndarray): The given list of nodes.
|
||||
node_list (Union[list, numpy.ndarray]): The given list of nodes.
|
||||
neighbor_type (int): Specify the type of neighbor.
|
||||
|
||||
Returns:
|
||||
|
@ -137,9 +137,9 @@ class GraphData:
|
|||
2-hop samling result ...]
|
||||
|
||||
Args:
|
||||
node_list (list or numpy.ndarray): The given list of nodes.
|
||||
neighbor_nums (list or numpy.ndarray): Number of neighbors sampled per hop.
|
||||
neighbor_types (list or numpy.ndarray): Neighbor type sampled per hop.
|
||||
node_list (Union[list, numpy.ndarray]): The given list of nodes.
|
||||
neighbor_nums (Union[list, numpy.ndarray]): Number of neighbors sampled per hop.
|
||||
neighbor_types (Union[list, numpy.ndarray]): Neighbor type sampled per hop.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: array of nodes.
|
||||
|
@ -164,7 +164,7 @@ class GraphData:
|
|||
Get `neg_neighbor_type` negative sampled neighbors of the nodes in `node_list`.
|
||||
|
||||
Args:
|
||||
node_list (list or numpy.ndarray): The given list of nodes.
|
||||
node_list (Union[list, numpy.ndarray]): The given list of nodes.
|
||||
neg_neighbor_num (int): Number of neighbors sampled.
|
||||
neg_neighbor_type (int): Specify the type of negative neighbor.
|
||||
|
||||
|
@ -191,8 +191,8 @@ class GraphData:
|
|||
Get `feature_types` feature of the nodes in `node_list`.
|
||||
|
||||
Args:
|
||||
node_list (list or numpy.ndarray): The given list of nodes.
|
||||
feature_types (list or numpy.ndarray): The given list of feature types.
|
||||
node_list (Union[list, numpy.ndarray]): The given list of nodes.
|
||||
feature_types (Union[list, numpy.ndarray]): The given list of feature types.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: array of features.
|
||||
|
@ -220,8 +220,8 @@ class GraphData:
|
|||
Get `feature_types` feature of the edges in `edge_list`.
|
||||
|
||||
Args:
|
||||
edge_list (list or numpy.ndarray): The given list of edges.
|
||||
feature_types (list or numpy.ndarray): The given list of feature types.
|
||||
edge_list (Union[list, numpy.ndarray]): The given list of edges.
|
||||
feature_types (Union[list, numpy.ndarray]): The given list of feature types.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: array of features.
|
||||
|
|
|
@ -30,7 +30,7 @@ def serialize(dataset, json_filepath=None):
|
|||
|
||||
Args:
|
||||
dataset (Dataset): the starting node.
|
||||
json_filepath (string): a filepath where a serialized json file will be generated.
|
||||
json_filepath (str): a filepath where a serialized json file will be generated.
|
||||
|
||||
Returns:
|
||||
dict containing the serialized dataset graph.
|
||||
|
@ -63,7 +63,7 @@ def deserialize(input_dict=None, json_filepath=None):
|
|||
|
||||
Args:
|
||||
input_dict (dict): a python dictionary containing a serialized dataset graph
|
||||
json_filepath (string): a path to the json file.
|
||||
json_filepath (str): a path to the json file.
|
||||
|
||||
Returns:
|
||||
de.Dataset or None if error occurs.
|
||||
|
|
|
@ -108,7 +108,7 @@ class Ngram(cde.NgramOp):
|
|||
Refer to https://en.wikipedia.org/wiki/N-gram#Examples for an overview of what n-gram is and how it works.
|
||||
|
||||
Args:
|
||||
n (list of int): n in n-gram, n >= 1. n is a list of positive integers, for e.g. n=[4,3], The result
|
||||
n (list[int]): n in n-gram, n >= 1. n is a list of positive integers, for e.g. n=[4,3], The result
|
||||
would be a 4-gram followed by a 3-gram in the same tensor. If number of words is not enough to make up for
|
||||
a n-gram, an empty string would be returned. For e.g. 3 grams on ["mindspore","best"] would result in an
|
||||
empty string be produced.
|
||||
|
@ -199,7 +199,7 @@ class JiebaTokenizer(cde.JiebaTokenizerOp):
|
|||
Add user defined word to JiebaTokenizer's dictionary.
|
||||
|
||||
Args:
|
||||
user_dict (str or dict): Dictionary to be added, file path or Python dictionary,
|
||||
user_dict (Union[str, dict]): Dictionary to be added, file path or Python dictionary,
|
||||
Python Dict format: {word1:freq1, word2:freq2,...}.
|
||||
Jieba dictionary format : word(required), freq(optional), such as:
|
||||
|
||||
|
@ -339,9 +339,9 @@ class SentencePieceTokenizer(cde.SentencePieceTokenizerOp):
|
|||
Tokenize scalar token or 1-D tokens to tokens by sentencepiece.
|
||||
|
||||
Args:
|
||||
mode(str or SentencePieceVocab): If the input parameter is a file, then it is of type string,
|
||||
mode(Union[str, SentencePieceVocab]): If the input parameter is a file, then it is of type string,
|
||||
if the input parameter is a SentencePieceVocab object, then it is of type SentencePieceVocab.
|
||||
out_type(str or int): The type of output.
|
||||
out_type(Union[str, int]): The type of output.
|
||||
"""
|
||||
|
||||
def __init__(self, mode, out_type):
|
||||
|
|
|
@ -51,7 +51,7 @@ class Vocab(cde.Vocab):
|
|||
|
||||
Args:
|
||||
dataset(Dataset): dataset to build vocab from.
|
||||
columns(list of str, optional): column names to get words from. It can be a list of column names.
|
||||
columns(list[str], optional): column names to get words from. It can be a list of column names.
|
||||
(default=None, where all columns will be used. If any column isn't string type, will return error).
|
||||
freq_range(tuple, optional): A tuple of integers (min_frequency, max_frequency). Words within the frequency
|
||||
range would be kept. 0 <= min_frequency <= max_frequency <= total_words. min_frequency=0 is the same as
|
||||
|
|
|
@ -46,7 +46,7 @@ class Fill(cde.FillOp):
|
|||
The output tensor will have the same shape and type as the input tensor.
|
||||
|
||||
Args:
|
||||
fill_value (python types (str, bytes, int, float, or bool)) : scalar value
|
||||
fill_value (Union[str, bytes, int, float, bool])) : scalar value
|
||||
to fill created tensor with.
|
||||
"""
|
||||
|
||||
|
@ -78,9 +78,9 @@ class Slice(cde.SliceOp):
|
|||
(Currently only rank-1 tensors are supported).
|
||||
|
||||
Args:
|
||||
slices(Variable length argument list, supported types are, int, list[int], slice, None or Ellipses):
|
||||
Maximum `n` number of arguments to slice a tensor of rank `n`, one object in slices can be one of:
|
||||
|
||||
slices(Union[int, list(int), slice, None, Ellipses]):
|
||||
Maximum `n` number of arguments to slice a tensor of rank `n`.
|
||||
One object in slices can be one of:
|
||||
1. :py:obj:`int`: Slice this index only. Negative index is supported.
|
||||
2. :py:obj:`list(int)`: Slice these indices ion the list only. Negative indices are supported.
|
||||
3. :py:obj:`slice`: Slice the generated indices from the slice object. Similar to `start:stop:step`.
|
||||
|
@ -139,9 +139,9 @@ class Mask(cde.MaskOp):
|
|||
|
||||
Args:
|
||||
operator (Relational): One of the relational operator EQ, NE LT, GT, LE or GE
|
||||
constant (python types (str, int, float, or bool): constant to be compared to.
|
||||
constant (Union[str, int, float, bool]): constant to be compared to.
|
||||
Constant will be casted to the type of the input tensor
|
||||
dtype (optional, mindspore.dtype): type of the generated mask. Default to bool
|
||||
dtype (mindspore.dtype, optional): type of the generated mask. Default to bool
|
||||
|
||||
Examples:
|
||||
>>> # Data before
|
||||
|
@ -171,7 +171,7 @@ class PadEnd(cde.PadEndOp):
|
|||
Args:
|
||||
pad_shape (list(int)): list on integers representing the shape needed. Dimensions that set to `None` will
|
||||
not be padded (i.e., original dim will be used). Shorter dimensions will truncate the values.
|
||||
pad_value (python types (str, bytes, int, float, or bool), optional): value used to pad. Default to 0 or empty
|
||||
pad_value (Union[str, bytes, int, float, bool]), optional): value used to pad. Default to 0 or empty
|
||||
string in case of Tensors of strings.
|
||||
|
||||
Examples:
|
||||
|
|
|
@ -77,7 +77,7 @@ class AutoContrast(cde.AutoContrastOp):
|
|||
|
||||
Args:
|
||||
cutoff (float, optional): Percent of pixels to cut off from the histogram (default=0.0).
|
||||
ignore (int or sequence, optional): Pixel values to ignore (default=None).
|
||||
ignore (Union[int, sequence], optional): Pixel values to ignore (default=None).
|
||||
"""
|
||||
|
||||
@check_auto_contrast
|
||||
|
@ -151,10 +151,10 @@ class RandomCrop(cde.RandomCropOp):
|
|||
Crop the input image at a random location.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the cropped image.
|
||||
size (Union[int, sequence]): The output size of the cropped image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
padding (int or sequence, optional): The number of pixels to pad the image (default=None).
|
||||
padding (Union[int, sequence], optional): The number of pixels to pad the image (default=None).
|
||||
If padding is not None, pad image firstly with padding values.
|
||||
If a single number is provided, it pads all borders with this value.
|
||||
If a tuple or list of 2 values are provided, it pads the (left and top)
|
||||
|
@ -163,7 +163,7 @@ class RandomCrop(cde.RandomCropOp):
|
|||
it pads the left, top, right and bottom respectively.
|
||||
pad_if_needed (bool, optional): Pad the image if either side is smaller than
|
||||
the given output size (default=False).
|
||||
fill_value (int or tuple, optional): The pixel intensity of the borders if
|
||||
fill_value (Union[int, tuple], optional): The pixel intensity of the borders if
|
||||
the padding_mode is Border.CONSTANT (default=0). If it is a 3-tuple, it is used to
|
||||
fill R, G, B channels respectively.
|
||||
padding_mode (Border mode, optional): The method of padding (default=Border.CONSTANT). Can be any of
|
||||
|
@ -206,10 +206,10 @@ class RandomCropWithBBox(cde.RandomCropWithBBoxOp):
|
|||
Crop the input image at a random location and adjust bounding boxes accordingly.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the cropped image.
|
||||
size (Union[int, sequence]): The output size of the cropped image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
padding (int or sequence, optional): The number of pixels to pad the image (default=None).
|
||||
padding (Union[int, sequence], optional): The number of pixels to pad the image (default=None).
|
||||
If padding is not None, pad image firstly with padding values.
|
||||
If a single number is provided, it pads all borders with this value.
|
||||
If a tuple or list of 2 values are provided, it pads the (left and top)
|
||||
|
@ -217,7 +217,7 @@ class RandomCropWithBBox(cde.RandomCropWithBBoxOp):
|
|||
If 4 values are provided as a list or tuple,it pads the left, top, right and bottom respectively.
|
||||
pad_if_needed (bool, optional): Pad the image if either side is smaller than
|
||||
the given output size (default=False).
|
||||
fill_value (int or tuple, optional): The pixel intensity of the borders if
|
||||
fill_value (Union[int, tuple], optional): The pixel intensity of the borders if
|
||||
the padding_mode is Border.CONSTANT (default=0). If it is a 3-tuple, it is used to
|
||||
fill R, G, B channels respectively.
|
||||
padding_mode (Border mode, optional): The method of padding (default=Border.CONSTANT). Can be any of
|
||||
|
@ -335,7 +335,7 @@ class Resize(cde.ResizeOp):
|
|||
Resize the input image to the given size.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the resized image.
|
||||
size (Union[int, sequence]): The output size of the resized image.
|
||||
If size is an int, smaller edge of the image will be resized to this value with
|
||||
the same image aspect ratio.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
|
@ -365,7 +365,7 @@ class ResizeWithBBox(cde.ResizeWithBBoxOp):
|
|||
Resize the input image to the given size and adjust bounding boxes accordingly.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the resized image.
|
||||
size (Union[int, sequence]): The output size of the resized image.
|
||||
If size is an int, smaller edge of the image will be resized to this value with
|
||||
the same image aspect ratio.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
|
@ -395,7 +395,7 @@ class RandomResizedCropWithBBox(cde.RandomCropAndResizeWithBBoxOp):
|
|||
Crop the input image to a random size and aspect ratio and adjust bounding boxes accordingly.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The size of the output image.
|
||||
size (Union[int, sequence]): The size of the output image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
scale (tuple, optional): Range (min, max) of respective size of the original
|
||||
|
@ -434,7 +434,7 @@ class RandomResizedCrop(cde.RandomCropAndResizeOp):
|
|||
Crop the input image to a random size and aspect ratio.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The size of the output image.
|
||||
size (Union[int, sequence]): The size of the output image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
scale (tuple, optional): Range (min, max) of respective size of the original
|
||||
|
@ -473,7 +473,7 @@ class CenterCrop(cde.CenterCropOp):
|
|||
Crops the input image at the center to the given size.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the cropped image.
|
||||
size (Union[int, sequence]): The output size of the cropped image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
"""
|
||||
|
@ -491,16 +491,16 @@ class RandomColorAdjust(cde.RandomColorAdjustOp):
|
|||
Randomly adjust the brightness, contrast, saturation, and hue of the input image.
|
||||
|
||||
Args:
|
||||
brightness (float or tuple, optional): Brightness adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
brightness (Union[float, tuple], optional): Brightness adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
If it is a float, the factor is uniformly chosen from the range [max(0, 1-brightness), 1+brightness].
|
||||
If it is a sequence, it should be [min, max] for the range.
|
||||
contrast (float or tuple, optional): Contrast adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
contrast (Union[float, tuple], optional): Contrast adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
If it is a float, the factor is uniformly chosen from the range [max(0, 1-contrast), 1+contrast].
|
||||
If it is a sequence, it should be [min, max] for the range.
|
||||
saturation (float or tuple, optional): Saturation adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
saturation (Union[float, tuple], optional): Saturation adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
If it is a float, the factor is uniformly chosen from the range [max(0, 1-saturation), 1+saturation].
|
||||
If it is a sequence, it should be [min, max] for the range.
|
||||
hue (float or tuple, optional): Hue adjustment factor (default=(0, 0)).
|
||||
hue (Union[float, tuple], optional): Hue adjustment factor (default=(0, 0)).
|
||||
If it is a float, the range will be [-hue, hue]. Value should be 0 <= hue <= 0.5.
|
||||
If it is a sequence, it should be [min, max] where -0.5 <= min <= max <= 0.5.
|
||||
"""
|
||||
|
@ -533,7 +533,7 @@ class RandomRotation(cde.RandomRotationOp):
|
|||
Rotate the input image by a random angle.
|
||||
|
||||
Args:
|
||||
degrees (int or float or sequence): Range of random rotation degrees.
|
||||
degrees (Union[int, float, sequence): Range of random rotation degrees.
|
||||
If degrees is a number, the range will be converted to (-degrees, degrees).
|
||||
If degrees is a sequence, it should be (min, max).
|
||||
resample (Inter mode, optional): An optional resampling filter (default=Inter.NEAREST).
|
||||
|
@ -552,7 +552,8 @@ class RandomRotation(cde.RandomRotationOp):
|
|||
Note that the expand flag assumes rotation around the center and no translation.
|
||||
center (tuple, optional): Optional center of rotation (a 2-tuple) (default=None).
|
||||
Origin is the top left corner. None sets to the center of the image.
|
||||
fill_value (int or tuple, optional): Optional fill color for the area outside the rotated image (default=0).
|
||||
fill_value (Union[int, tuple], optional): Optional fill color for the area outside the rotated image
|
||||
(default=0).
|
||||
If it is a 3-tuple, it is used for R, G, B channels respectively.
|
||||
If it is an int, it is used for all RGB channels.
|
||||
"""
|
||||
|
@ -595,7 +596,7 @@ class RandomResize(cde.RandomResizeOp):
|
|||
Tensor operation to resize the input image using a randomly selected interpolation mode.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the resized image.
|
||||
size (Union[int, sequence]): The output size of the resized image.
|
||||
If size is an int, smaller edge of the image will be resized to this value with
|
||||
the same image aspect ratio.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
|
@ -616,7 +617,7 @@ class RandomResizeWithBBox(cde.RandomResizeWithBBoxOp):
|
|||
bounding boxes accordingly.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the resized image.
|
||||
size (Union[int, sequence]): The output size of the resized image.
|
||||
If size is an int, smaller edge of the image will be resized to this value with
|
||||
the same image aspect ratio.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
|
@ -642,7 +643,7 @@ class RandomCropDecodeResize(cde.RandomCropDecodeResizeOp):
|
|||
Equivalent to RandomResizedCrop, but crops before decodes.
|
||||
|
||||
Args:
|
||||
size (int or sequence, optional): The size of the output image.
|
||||
size (Union[int, sequence], optional): The size of the output image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
scale (tuple, optional): Range (min, max) of respective size of the
|
||||
|
@ -681,13 +682,13 @@ class Pad(cde.PadOp):
|
|||
Pads the image according to padding parameters.
|
||||
|
||||
Args:
|
||||
padding (int or sequence): The number of pixels to pad the image.
|
||||
padding (Union[int, sequence]): The number of pixels to pad the image.
|
||||
If a single number is provided, it pads all borders with this value.
|
||||
If a tuple or list of 2 values are provided, it pads the (left and top)
|
||||
with the first value and (right and bottom) with the second value.
|
||||
If 4 values are provided as a list or tuple,
|
||||
it pads the left, top, right and bottom respectively.
|
||||
fill_value (int or tuple, optional): The pixel intensity of the borders if
|
||||
fill_value (Union[int, tuple], optional): The pixel intensity of the borders if
|
||||
the padding_mode is Border.CONSTANT (default=0). If it is a 3-tuple, it is used to
|
||||
fill R, G, B channels respectively.
|
||||
padding_mode (Border mode): The method of padding (default=Border.CONSTANT). Can be any of
|
||||
|
|
|
@ -100,7 +100,7 @@ class ToTensor:
|
|||
The range of channel dimension remains the same.
|
||||
|
||||
Args:
|
||||
output_type (numpy datatype, optional): The datatype of the numpy output (default=numpy.float32).
|
||||
output_type (numpy datatype, optional): The datatype of the numpy output (default=np.float32).
|
||||
|
||||
Examples:
|
||||
>>> py_transforms.ComposeOp([py_transforms.Decode(),
|
||||
|
@ -260,10 +260,10 @@ class RandomCrop:
|
|||
Crop the input PIL Image at a random location.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the cropped image.
|
||||
size (Union[int, sequence]): The output size of the cropped image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
padding (int or sequence, optional): The number of pixels to pad the image (default=None).
|
||||
padding (Union[int, sequence], optional): The number of pixels to pad the image (default=None).
|
||||
If padding is not None, pad image firstly with padding values.
|
||||
If a single number is provided, it pads all borders with this value.
|
||||
If a tuple or list of 2 values are provided, it pads the (left and top)
|
||||
|
@ -385,7 +385,7 @@ class Resize:
|
|||
Resize the input PIL Image to the given size.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the resized image.
|
||||
size (Union[int, sequence]): The output size of the resized image.
|
||||
If size is an int, smaller edge of the image will be resized to this value with
|
||||
the same image aspect ratio.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
|
@ -427,7 +427,7 @@ class RandomResizedCrop:
|
|||
Extract crop from the input image and resize it to a random size and aspect ratio.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The size of the output image.
|
||||
size (Union[int, sequence]): The size of the output image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
scale (tuple, optional): Range (min, max) of respective size of the original size
|
||||
|
@ -479,7 +479,7 @@ class CenterCrop:
|
|||
Crop the central reigion of the input PIL Image to the given size.
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the cropped image.
|
||||
size (Union[int, sequence]): The output size of the cropped image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
|
||||
|
@ -511,16 +511,16 @@ class RandomColorAdjust:
|
|||
Perform a random brightness, contrast, saturation, and hue adjustment on the input PIL image.
|
||||
|
||||
Args:
|
||||
brightness (float or tuple, optional): Brightness adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
brightness (Union[float, tuple], optional): Brightness adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
If it is a float, the factor is uniformly chosen from the range [max(0, 1-brightness), 1+brightness].
|
||||
If it is a sequence, it should be [min, max] for the range.
|
||||
contrast (float or tuple, optional): Contrast adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
contrast (Union[float, tuple], optional): Contrast adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
If it is a float, the factor is uniformly chosen from the range [max(0, 1-contrast), 1+contrast].
|
||||
If it is a sequence, it should be [min, max] for the range.
|
||||
saturation (float or tuple, optional): Saturation adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
saturation (Union[float, tuple], optional): Saturation adjustment factor (default=(1, 1)). Cannot be negative.
|
||||
If it is a float, the factor is uniformly chosen from the range [max(0, 1-saturation), 1+saturation].
|
||||
If it is a sequence, it should be [min, max] for the range.
|
||||
hue (float or tuple, optional): Hue adjustment factor (default=(0, 0)).
|
||||
hue (Union[float, tuple], optional): Hue adjustment factor (default=(0, 0)).
|
||||
If it is a float, the range will be [-hue, hue]. Value should be 0 <= hue <= 0.5.
|
||||
If it is a sequence, it should be [min, max] where -0.5 <= min <= max <= 0.5.
|
||||
|
||||
|
@ -558,7 +558,7 @@ class RandomRotation:
|
|||
See https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.Image.rotate.
|
||||
|
||||
Args:
|
||||
degrees (int or float or sequence): Range of random rotation degrees.
|
||||
degrees (Union[int, float, sequence]): Range of random rotation degrees.
|
||||
If degrees is a number, the range will be converted to (-degrees, degrees).
|
||||
If degrees is a sequence, it should be (min, max).
|
||||
resample (Inter mode, optional): An optional resampling filter (default=Inter.NEAREST).
|
||||
|
@ -743,7 +743,7 @@ class TenCrop:
|
|||
Generate 10 cropped images (first 5 from FiveCrop, second 5 from their flipped version).
|
||||
|
||||
Args:
|
||||
size (int or sequence): The output size of the crop.
|
||||
size (Union[int, sequence]): The output size of the crop.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
use_vertical_flip (bool, optional): Flip the image vertically instead of horizontally
|
||||
|
@ -853,13 +853,13 @@ class Pad:
|
|||
Pad the input PIL image according to padding parameters.
|
||||
|
||||
Args:
|
||||
padding (int or sequence): The number of pixels to pad the image.
|
||||
padding (Union[int, sequence]): The number of pixels to pad the image.
|
||||
If a single number is provided, it pads all borders with this value.
|
||||
If a tuple or list of 2 values are provided, it pads the (left and top)
|
||||
with the first value and (right and bottom) with the second value.
|
||||
If 4 values are provided as a list or tuple,
|
||||
it pads the left, top, right and bottom respectively.
|
||||
fill_value (int or tuple, optional): Filling value (default=0). The pixel intensity
|
||||
fill_value (Union[int, tuple], optional): Filling value (default=0). The pixel intensity
|
||||
of the borders if the padding_mode is Border.CONSTANT.
|
||||
If it is a 3-tuple, it is used to fill R, G, B channels respectively.
|
||||
padding_mode (Border mode, optional): The method of padding (default=Border.CONSTANT).
|
||||
|
@ -961,7 +961,7 @@ class RandomErasing:
|
|||
original image (default=(0.02, 0.33)).
|
||||
ratio (sequence of floats, optional): Range of the aspect ratio of the erase
|
||||
area (default=(0.3, 3.3)).
|
||||
value (int or sequence): Erasing value (default=0).
|
||||
value (Union[int, sequence]): Erasing value (default=0).
|
||||
If value is a single int, it is applied to all pixels to be erases.
|
||||
If value is a sequence of length 3, it is applied to R, G, B channels respectively.
|
||||
If value is a str 'random', the erase value will be obtained from a standard normal distribution.
|
||||
|
@ -1088,7 +1088,7 @@ class RandomAffine:
|
|||
Apply Random affine transformation to the input PIL image.
|
||||
|
||||
Args:
|
||||
degrees (int or float or sequence): Range of the rotation degrees.
|
||||
degrees (Union[int, float, sequence]): Range of the rotation degrees.
|
||||
If degrees is a number, the range will be (-degrees, degrees).
|
||||
If degrees is a sequence, it should be (min, max).
|
||||
translate (sequence, optional): Sequence (tx, ty) of maximum translation in
|
||||
|
@ -1097,7 +1097,7 @@ class RandomAffine:
|
|||
(-tx*width, tx*width) and (-ty*height, ty*height), respectively.
|
||||
If None, no translations gets applied.
|
||||
scale (sequence, optional): Scaling factor interval (default=None, original scale is used).
|
||||
shear (int or float or sequence, optional): Range of shear factor (default=None).
|
||||
shear (Union[int, float, sequence], optional): Range of shear factor (default=None).
|
||||
If a number 'shear', then a shear parallel to the x axis in the range of (-shear, +shear) is applied.
|
||||
If a tuple or list of size 2, then a shear parallel to the x axis in the range of (shear[0], shear[1])
|
||||
is applied.
|
||||
|
@ -1114,7 +1114,7 @@ class RandomAffine:
|
|||
|
||||
- Inter.BICUBIC, means resample method is bicubic interpolation.
|
||||
|
||||
fill_value (tuple or int, optional): Optional fill_value to fill the area outside the transform
|
||||
fill_value (Union[tuple, int], optional): Optional fill_value to fill the area outside the transform
|
||||
in the output image. Used only in Pillow versions > 5.0.0 (default=0, filling is performed).
|
||||
|
||||
Raises:
|
||||
|
@ -1363,7 +1363,7 @@ class AutoContrast:
|
|||
|
||||
Args:
|
||||
cutoff (float, optional): Percent of pixels to cut off from the histogram (default=0.0).
|
||||
ignore (int or sequence, optional): Pixel values to ignore (default=None).
|
||||
ignore (Union[int, sequence], optional): Pixel values to ignore (default=None).
|
||||
|
||||
Examples:
|
||||
>>> py_transforms.ComposeOp([py_transforms.Decode(),
|
||||
|
|
|
@ -148,7 +148,7 @@ def to_tensor(img, output_type):
|
|||
Change the input image (PIL Image or Numpy image array) to numpy format.
|
||||
|
||||
Args:
|
||||
img (PIL Image or numpy.ndarray): Image to be converted.
|
||||
img (Union[PIL Image, numpy.ndarray]): Image to be converted.
|
||||
output_type: The datatype of the numpy output. e.g. np.float32
|
||||
|
||||
Returns:
|
||||
|
@ -284,7 +284,7 @@ def resize(img, size, interpolation=Inter.BILINEAR):
|
|||
|
||||
Args:
|
||||
img (PIL Image): Image to be resized.
|
||||
size (int or sequence): The output size of the resized image.
|
||||
size (Union[int, sequence]): The output size of the resized image.
|
||||
If size is an int, smaller edge of the image will be resized to this value with
|
||||
the same image aspect ratio.
|
||||
If size is a sequence of (height, width), this will be the desired output size.
|
||||
|
@ -321,7 +321,7 @@ def center_crop(img, size):
|
|||
|
||||
Args:
|
||||
img (PIL Image): Image to be cropped.
|
||||
size (int or tuple): The size of the crop box.
|
||||
size (Union[int, tuple]): The size of the crop box.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
|
||||
|
@ -346,7 +346,7 @@ def random_resize_crop(img, size, scale, ratio, interpolation=Inter.BILINEAR, ma
|
|||
|
||||
Args:
|
||||
img (PIL Image): Image to be randomly cropped and resized.
|
||||
size (int or sequence): The size of the output image.
|
||||
size (Union[int, sequence]): The size of the output image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
scale (tuple): Range (min, max) of respective size of the original size to be cropped.
|
||||
|
@ -416,10 +416,10 @@ def random_crop(img, size, padding, pad_if_needed, fill_value, padding_mode):
|
|||
|
||||
Args:
|
||||
img (PIL Image): Image to be randomly cropped.
|
||||
size (int or sequence): The output size of the cropped image.
|
||||
size (Union[int, sequence]): The output size of the cropped image.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
padding (int or sequence, optional): The number of pixels to pad the image.
|
||||
padding (Union[int, sequence], optional): The number of pixels to pad the image.
|
||||
If a single number is provided, it pads all borders with this value.
|
||||
If a tuple or list of 2 values are provided, it pads the (left and top)
|
||||
with the first value and (right and bottom) with the second value.
|
||||
|
@ -428,7 +428,7 @@ def random_crop(img, size, padding, pad_if_needed, fill_value, padding_mode):
|
|||
Default is None.
|
||||
pad_if_needed (bool): Pad the image if either side is smaller than
|
||||
the given output size. Default is False.
|
||||
fill_value (int or tuple): The pixel intensity of the borders if
|
||||
fill_value (Union[int, tuple]): The pixel intensity of the borders if
|
||||
the padding_mode is 'constant'. If it is a 3-tuple, it is used to
|
||||
fill R, G, B channels respectively.
|
||||
padding_mode (str): The method of padding. Can be any of
|
||||
|
@ -602,7 +602,7 @@ def rotate(img, angle, resample, expand, center, fill_value):
|
|||
Args:
|
||||
img (PIL Image): Image to be rotated.
|
||||
angle (int or float): Rotation angle in degrees, counter-clockwise.
|
||||
resample (Inter.NEAREST, or Inter.BILINEAR, Inter.BICUBIC, optional): An optional resampling filter.
|
||||
resample (Union[Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC], optional): An optional resampling filter.
|
||||
If omitted, or if the image has mode "1" or "P", it is set to be Inter.NEAREST.
|
||||
expand (bool, optional): Optional expansion flag. If set to True, expand the output
|
||||
image to make it large enough to hold the entire rotated image.
|
||||
|
@ -610,7 +610,7 @@ def rotate(img, angle, resample, expand, center, fill_value):
|
|||
Note that the expand flag assumes rotation around the center and no translation.
|
||||
center (tuple, optional): Optional center of rotation (a 2-tuple).
|
||||
Origin is the top left corner.
|
||||
fill_value (int or tuple): Optional fill color for the area outside the rotated image.
|
||||
fill_value (Union[int, tuple]): Optional fill color for the area outside the rotated image.
|
||||
If it is a 3-tuple, it is used for R, G, B channels respectively.
|
||||
If it is an int, it is used for all RGB channels.
|
||||
|
||||
|
@ -634,16 +634,16 @@ def random_color_adjust(img, brightness, contrast, saturation, hue):
|
|||
|
||||
Args:
|
||||
img (PIL Image): Image to have its color adjusted randomly.
|
||||
brightness (float or tuple): Brightness adjustment factor. Cannot be negative.
|
||||
brightness (Union[float, tuple]): Brightness adjustment factor. Cannot be negative.
|
||||
If it is a float, the factor is uniformly chosen from the range [max(0, 1-brightness), 1+brightness].
|
||||
If it is a sequence, it should be [min, max] for the range.
|
||||
contrast (float or tuple): Contrast adjustment factor. Cannot be negative.
|
||||
contrast (Union[float, tuple]): Contrast adjustment factor. Cannot be negative.
|
||||
If it is a float, the factor is uniformly chosen from the range [max(0, 1-contrast), 1+contrast].
|
||||
If it is a sequence, it should be [min, max] for the range.
|
||||
saturation (float or tuple): Saturation adjustment factor. Cannot be negative.
|
||||
saturation (Union[float, tuple]): Saturation adjustment factor. Cannot be negative.
|
||||
If it is a float, the factor is uniformly chosen from the range [max(0, 1-saturation), 1+saturation].
|
||||
If it is a sequence, it should be [min, max] for the range.
|
||||
hue (float or tuple): Hue adjustment factor.
|
||||
hue (Union[float, tuple]): Hue adjustment factor.
|
||||
If it is a float, the range will be [-hue, hue]. Value should be 0 <= hue <= 0.5.
|
||||
If it is a sequence, it should be [min, max] where -0.5 <= min <= max <= 0.5.
|
||||
|
||||
|
@ -696,10 +696,10 @@ def random_rotation(img, degrees, resample, expand, center, fill_value):
|
|||
|
||||
Args:
|
||||
img (PIL Image): Image to be rotated.
|
||||
degrees (int or float or sequence): Range of random rotation degrees.
|
||||
degrees (Union[int, float, sequence]): Range of random rotation degrees.
|
||||
If degrees is a number, the range will be converted to (-degrees, degrees).
|
||||
If degrees is a sequence, it should be (min, max).
|
||||
resample (Inter.NEAREST, or Inter.BILINEAR, Inter.BICUBIC, optional): An optional resampling filter.
|
||||
resample (Union[Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC], optional): An optional resampling filter.
|
||||
If omitted, or if the image has mode "1" or "P", it is set to be Inter.NEAREST.
|
||||
expand (bool, optional): Optional expansion flag. If set to True, expand the output
|
||||
image to make it large enough to hold the entire rotated image.
|
||||
|
@ -707,7 +707,7 @@ def random_rotation(img, degrees, resample, expand, center, fill_value):
|
|||
Note that the expand flag assumes rotation around the center and no translation.
|
||||
center (tuple, optional): Optional center of rotation (a 2-tuple).
|
||||
Origin is the top left corner.
|
||||
fill_value (int or tuple): Optional fill color for the area outside the rotated image.
|
||||
fill_value (Union[int, tuple]): Optional fill color for the area outside the rotated image.
|
||||
If it is a 3-tuple, it is used for R, G, B channels respectively.
|
||||
If it is an int, it is used for all RGB channels.
|
||||
|
||||
|
@ -789,7 +789,7 @@ def five_crop(img, size):
|
|||
|
||||
Args:
|
||||
img (PIL Image): PIL Image to be cropped.
|
||||
size (int or sequence): The output size of the crop.
|
||||
size (Union[int, sequence]): The output size of the crop.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
|
||||
|
@ -829,7 +829,7 @@ def ten_crop(img, size, use_vertical_flip=False):
|
|||
|
||||
Args:
|
||||
img (PIL Image): PIL Image to be cropped.
|
||||
size (int or sequence): The output size of the crop.
|
||||
size (Union[int, sequence]): The output size of the crop.
|
||||
If size is an int, a square crop of size (size, size) is returned.
|
||||
If size is a sequence of length 2, it should be (height, width).
|
||||
use_vertical_flip (bool): Flip the image vertically instead of horizontally if set to True.
|
||||
|
@ -895,14 +895,14 @@ def pad(img, padding, fill_value, padding_mode):
|
|||
|
||||
Args:
|
||||
img (PIL Image): Image to be padded.
|
||||
padding (int or sequence, optional): The number of pixels to pad the image.
|
||||
padding (Union[int, sequence], optional): The number of pixels to pad the image.
|
||||
If a single number is provided, it pads all borders with this value.
|
||||
If a tuple or list of 2 values are provided, it pads the (left and top)
|
||||
with the first value and (right and bottom) with the second value.
|
||||
If 4 values are provided as a list or tuple,
|
||||
it pads the left, top, right and bottom respectively.
|
||||
Default is None.
|
||||
fill_value (int or tuple): The pixel intensity of the borders if
|
||||
fill_value (Union[int, tuple]): The pixel intensity of the borders if
|
||||
the padding_mode is "constant". If it is a 3-tuple, it is used to
|
||||
fill R, G, B channels respectively.
|
||||
padding_mode (str): The method of padding. Can be any of
|
||||
|
@ -1137,12 +1137,12 @@ def random_affine(img, angle, translations, scale, shear, resample, fill_value=0
|
|||
|
||||
Args:
|
||||
img (PIL Image): Image to be applied affine transformation.
|
||||
angle (int or float): Rotation angle in degrees, clockwise.
|
||||
angle (Union[int, float]): Rotation angle in degrees, clockwise.
|
||||
translations (sequence): Translations in horizontal and vertical axis.
|
||||
scale (float): Scale parameter, a single number.
|
||||
shear (float or sequence): Shear amount parallel to x and y axis.
|
||||
resample (Inter.NEAREST, or Inter.BILINEAR, Inter.BICUBIC, optional): An optional resampling filter.
|
||||
fill_value (tuple or int, optional): Optional fill_value to fill the area outside the transform
|
||||
shear (Union[float, sequence]): Shear amount parallel to x and y axis.
|
||||
resample (Union[Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC], optional): An optional resampling filter.
|
||||
fill_value (Union[tuple int], optional): Optional fill_value to fill the area outside the transform
|
||||
in the output image. Used only in Pillow versions > 5.0.0.
|
||||
If None, no filling is performed.
|
||||
|
||||
|
@ -1465,7 +1465,7 @@ def auto_contrast(img, cutoff, ignore):
|
|||
Args:
|
||||
img (PIL Image): Image to be augmented with AutoContrast.
|
||||
cutoff (float, optional): Percent of pixels to cut off from the histogram (default=0.0).
|
||||
ignore (int or sequence, optional): Pixel values to ignore (default=None).
|
||||
ignore (Union[int, sequence], optional): Pixel values to ignore (default=None).
|
||||
|
||||
Returns:
|
||||
img (PIL Image), Augmented image.
|
||||
|
|
Loading…
Reference in New Issue