add Ascend and CPU ST for enabling RDR

This commit is contained in:
liangyongxiong 2021-08-21 16:17:00 +08:00
parent 9f08cdc4ab
commit ee9d25bff9
4 changed files with 108 additions and 2 deletions

View File

@ -0,0 +1,50 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class LeNet(nn.Cell):
def __init__(self):
super(LeNet, self).__init__()
self.relu = P.ReLU()
self.batch_size = 1
weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
self.reshape = P.Reshape()
self.reshape1 = P.Reshape()
self.fc1 = nn.Dense(400, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
def construct(self, input_x):
output = self.conv1(input_x)
output = self.relu(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu(output)
output = self.pool(output)
output = self.reshape(output, (self.batch_size, -1))
output = self.fc1(output)
output = self.fc2(output)
output = self.fc3(output)
return output

View File

@ -0,0 +1,28 @@
import os
import tempfile
import json
import pytest
import mindspore.context as context
from .test_network_main import test_lenet
# create config file for RDR
def create_config_file(path):
data_dict = {'rdr': {'enable': True, 'path': path}}
filename = os.path.join(path, "mindspore_config.json")
with open(filename, "w") as f:
json.dump(data_dict, f)
return filename
def test_train(device_type):
context.set_context(mode=context.GRAPH_MODE, device_target=device_type)
with tempfile.TemporaryDirectory() as tmpdir:
config_file = create_config_file(tmpdir)
context.set_context(env_config_path=config_file)
test_lenet()
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_train_with_Ascend():
test_train("Ascend")

View File

@ -0,0 +1,28 @@
import os
import tempfile
import json
import pytest
import mindspore.context as context
from .test_network_main import test_lenet
# create config file for RDR
def create_config_file(path):
data_dict = {'rdr': {'enable': True, 'path': path}}
filename = os.path.join(path, "mindspore_config.json")
with open(filename, "w") as f:
json.dump(data_dict, f)
return filename
def test_train(device_type):
context.set_context(mode=context.GRAPH_MODE, device_target=device_type)
with tempfile.TemporaryDirectory() as tmpdir:
config_file = create_config_file(tmpdir)
context.set_context(env_config_path=config_file)
test_lenet()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_train_with_CPU():
test_train("CPU")

View File

@ -56,9 +56,9 @@ def test_resnet50():
def test_lenet(): def test_lenet():
data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([32]).astype(np.int32))
net = LeNet() net = LeNet()
data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
train(net, data, label) train(net, data, label)