forked from mindspore-Ecosystem/mindspore
add Ascend and CPU ST for enabling RDR
This commit is contained in:
parent
9f08cdc4ab
commit
ee9d25bff9
|
@ -0,0 +1,50 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
class LeNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(LeNet, self).__init__()
|
||||
self.relu = P.ReLU()
|
||||
self.batch_size = 1
|
||||
weight1 = Tensor(np.ones([6, 3, 5, 5]).astype(np.float32) * 0.01)
|
||||
weight2 = Tensor(np.ones([16, 6, 5, 5]).astype(np.float32) * 0.01)
|
||||
self.conv1 = nn.Conv2d(3, 6, (5, 5), weight_init=weight1, stride=1, padding=0, pad_mode='valid')
|
||||
self.conv2 = nn.Conv2d(6, 16, (5, 5), weight_init=weight2, pad_mode='valid', stride=1, padding=0)
|
||||
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode="valid")
|
||||
|
||||
self.reshape = P.Reshape()
|
||||
self.reshape1 = P.Reshape()
|
||||
|
||||
self.fc1 = nn.Dense(400, 120)
|
||||
self.fc2 = nn.Dense(120, 84)
|
||||
self.fc3 = nn.Dense(84, 10)
|
||||
|
||||
def construct(self, input_x):
|
||||
output = self.conv1(input_x)
|
||||
output = self.relu(output)
|
||||
output = self.pool(output)
|
||||
output = self.conv2(output)
|
||||
output = self.relu(output)
|
||||
output = self.pool(output)
|
||||
output = self.reshape(output, (self.batch_size, -1))
|
||||
output = self.fc1(output)
|
||||
output = self.fc2(output)
|
||||
output = self.fc3(output)
|
||||
return output
|
|
@ -0,0 +1,28 @@
|
|||
import os
|
||||
import tempfile
|
||||
import json
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from .test_network_main import test_lenet
|
||||
|
||||
# create config file for RDR
|
||||
def create_config_file(path):
|
||||
data_dict = {'rdr': {'enable': True, 'path': path}}
|
||||
filename = os.path.join(path, "mindspore_config.json")
|
||||
with open(filename, "w") as f:
|
||||
json.dump(data_dict, f)
|
||||
return filename
|
||||
|
||||
def test_train(device_type):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=device_type)
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
config_file = create_config_file(tmpdir)
|
||||
context.set_context(env_config_path=config_file)
|
||||
test_lenet()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_train_with_Ascend():
|
||||
test_train("Ascend")
|
|
@ -0,0 +1,28 @@
|
|||
import os
|
||||
import tempfile
|
||||
import json
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from .test_network_main import test_lenet
|
||||
|
||||
# create config file for RDR
|
||||
def create_config_file(path):
|
||||
data_dict = {'rdr': {'enable': True, 'path': path}}
|
||||
filename = os.path.join(path, "mindspore_config.json")
|
||||
with open(filename, "w") as f:
|
||||
json.dump(data_dict, f)
|
||||
return filename
|
||||
|
||||
def test_train(device_type):
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=device_type)
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
config_file = create_config_file(tmpdir)
|
||||
context.set_context(env_config_path=config_file)
|
||||
test_lenet()
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_train_with_CPU():
|
||||
test_train("CPU")
|
|
@ -56,9 +56,9 @@ def test_resnet50():
|
|||
|
||||
|
||||
def test_lenet():
|
||||
data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([32]).astype(np.int32))
|
||||
net = LeNet()
|
||||
data = Tensor(np.ones([net.batch_size, 3, 32, 32]).astype(np.float32) * 0.01)
|
||||
label = Tensor(np.ones([net.batch_size]).astype(np.int32))
|
||||
train(net, data, label)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue