forked from mindspore-Ecosystem/mindspore
Fix unique dynamic shape
This commit is contained in:
parent
cffe2c94fe
commit
ee8a060f55
|
@ -26,7 +26,7 @@ namespace kernel {
|
|||
template <typename T, typename S>
|
||||
class UniqueGpuKernel : public GpuKernel {
|
||||
public:
|
||||
UniqueGpuKernel() : input_size_(0), output_size_(0), workspace_size_(0), num_elements_(1), post_output_size_(0) {}
|
||||
UniqueGpuKernel() { ResetResource(); }
|
||||
~UniqueGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
|
@ -48,7 +48,7 @@ class UniqueGpuKernel : public GpuKernel {
|
|||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
kernel_node_ = kernel_node;
|
||||
std::vector<size_t> shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
std::vector<size_t> shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, 0);
|
||||
for (auto x : shape) {
|
||||
num_elements_ *= x;
|
||||
}
|
||||
|
@ -77,6 +77,19 @@ class UniqueGpuKernel : public GpuKernel {
|
|||
AnfAlgo::SetOutputInferTypeAndShape(type_ids, shapes, kernel_node_.get());
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
input_size_ = 0;
|
||||
output_size_ = 0;
|
||||
workspace_size_ = 0;
|
||||
num_elements_ = 1;
|
||||
post_output_size_ = 0;
|
||||
stream_ptr_ = nullptr;
|
||||
kernel_node_ = nullptr;
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_);
|
||||
|
|
|
@ -164,7 +164,10 @@ AbstractBasePtr InferImplUnique(const AnalysisEnginePtr &, const PrimitivePtr &p
|
|||
}
|
||||
ShapeVector ids_shape = {Shape::SHP_ANY};
|
||||
ShapeVector min_shape = {1};
|
||||
ShapeVector max_shape = shape->shape();
|
||||
ShapeVector max_shape = shape->max_shape();
|
||||
if (max_shape.empty()) {
|
||||
max_shape = shape->shape();
|
||||
}
|
||||
auto ids =
|
||||
std::make_shared<AbstractTensor>(input->element(), std::make_shared<Shape>(ids_shape, min_shape, max_shape));
|
||||
// Currently we choose the same data type as input for the idx.
|
||||
|
@ -174,7 +177,17 @@ AbstractBasePtr InferImplUnique(const AnalysisEnginePtr &, const PrimitivePtr &p
|
|||
if (input->element()->GetTypeTrack()->type_id() == TypeId::kNumberTypeInt64) {
|
||||
ids_idx_type = kInt64;
|
||||
}
|
||||
auto ids_idx = std::make_shared<AbstractTensor>(ids_idx_type, shape->shape());
|
||||
ShapeVector idx_shape = shape->shape();
|
||||
ShapeVector idx_min_shape = shape->min_shape();
|
||||
if (idx_min_shape.empty()) {
|
||||
idx_min_shape = shape->shape();
|
||||
}
|
||||
ShapeVector idx_max_shape = shape->max_shape();
|
||||
if (idx_max_shape.empty()) {
|
||||
idx_max_shape = shape->shape();
|
||||
}
|
||||
auto ids_idx = std::make_shared<AbstractTensor>(ids_idx_type, idx_shape);
|
||||
ids_idx->set_shape(std::make_shared<Shape>(idx_shape, idx_min_shape, idx_max_shape));
|
||||
// outputs: ids, ids_idx
|
||||
AbstractBasePtrList elements = {ids, ids_idx};
|
||||
return std::make_shared<AbstractTuple>(elements);
|
||||
|
|
|
@ -20,7 +20,7 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
from mindspore.ops.operations import _inner_ops as inner
|
||||
|
||||
class NetUnique(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -32,6 +32,20 @@ class NetUnique(nn.Cell):
|
|||
return x_unique, x_idx
|
||||
|
||||
|
||||
class NetUniqueDynamic(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetUniqueDynamic, self).__init__()
|
||||
self.convert = inner.GpuConvertToDynamicShape()
|
||||
self.unique = P.Unique()
|
||||
self.split = P.Split(0, 2)
|
||||
|
||||
def construct(self, x):
|
||||
x_convert = self.convert(x)
|
||||
x_unique, x_idx = self.unique(x_convert)
|
||||
x_split = self.split(x_unique)
|
||||
return x_unique, x_idx, x_split
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -224,3 +238,32 @@ def test_unique_large_int32():
|
|||
x_unique, x_idx = net(x)
|
||||
assert (x_unique.asnumpy() == exp_output).all()
|
||||
assert (x_idx.asnumpy() == exp_idx).all()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_unique_dynamic():
|
||||
x = Tensor(np.array([4, 5, 1, 2, 3, 3, 4, 5, 6]).astype(np.float32))
|
||||
expt_unique = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32)
|
||||
expt_index = np.array([3, 4, 0, 1, 2, 2, 3, 4, 5]).astype(np.int32)
|
||||
expt_split = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)
|
||||
|
||||
x2 = Tensor(np.array([1, 1, 4, 4, 7, 8, 8]).astype(np.float32))
|
||||
expt_unique2 = np.array([1, 4, 7, 8]).astype(np.float32)
|
||||
expt_index2 = np.array([0, 0, 1, 1, 2, 3, 3]).astype(np.int32)
|
||||
expt_split2 = np.array([[1, 4], [7, 8]]).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
net = NetUniqueDynamic()
|
||||
x_unique, x_idx, x_split = net(x)
|
||||
assert (x_unique.asnumpy() == expt_unique).all()
|
||||
assert (x_idx.asnumpy() == expt_index).all()
|
||||
for i, out in enumerate(x_split):
|
||||
assert (out.asnumpy() == expt_split[i]).all()
|
||||
|
||||
x_unique2, x_idx2, x_split2 = net(x2)
|
||||
assert (x_unique2.asnumpy() == expt_unique2).all()
|
||||
assert (x_idx2.asnumpy() == expt_index2).all()
|
||||
for i, out in enumerate(x_split2):
|
||||
assert (out.asnumpy() == expt_split2[i]).all()
|
||||
|
|
Loading…
Reference in New Issue