forked from mindspore-Ecosystem/mindspore
rename UniformSampler to UniformCandidateSampler
This commit is contained in:
parent
7e1b1f280a
commit
ee4e2db77e
|
@ -14,7 +14,7 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/uniform_sampler_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/uniform_candidate_sampler_impl.cuh"
|
||||
|
||||
template <typename S>
|
||||
__global__ void AssignToOutput(const int size, const S prob_val, S *output_array) {
|
||||
|
@ -24,13 +24,13 @@ __global__ void AssignToOutput(const int size, const S prob_val, S *output_array
|
|||
}
|
||||
|
||||
template <typename S>
|
||||
void CalUniformSampler(const int true_size, const int num_sampled, const S prob_val, S *true_expected_count,
|
||||
S *sampled_expected_count, cudaStream_t cuda_stream) {
|
||||
void CalUniformCandidateSampler(const int true_size, const int num_sampled, const S prob_val, S *true_expected_count,
|
||||
S *sampled_expected_count, cudaStream_t cuda_stream) {
|
||||
AssignToOutput<<<GET_BLOCKS(true_size), GET_THREADS, 0, cuda_stream>>>(true_size, prob_val, true_expected_count);
|
||||
AssignToOutput<<<GET_BLOCKS(num_sampled), GET_THREADS, 0, cuda_stream>>>(num_sampled, prob_val,
|
||||
sampled_expected_count);
|
||||
}
|
||||
|
||||
template void CalUniformSampler<float>(const int true_size, const int num_sampled, const float prob_val,
|
||||
float *true_expected_count, float *sampled_expected_count,
|
||||
cudaStream_t cuda_stream);
|
||||
template void CalUniformCandidateSampler<float>(const int true_size, const int num_sampled, const float prob_val,
|
||||
float *true_expected_count, float *sampled_expected_count,
|
||||
cudaStream_t cuda_stream);
|
|
@ -14,13 +14,13 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_UNIFORM_SAMPLER_IMPL_CUH_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_UNIFORM_SAMPLER_IMPL_CUH_
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_UNIFORM_CANDIDATE_SAMPLER_IMPL_CUH_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_UNIFORM_CANDIDATE_SAMPLER_IMPL_CUH_
|
||||
#include <cuda_runtime.h>
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
template <typename S>
|
||||
void CalUniformSampler(const int true_size, const int num_sampled, const S prob_val, S *true_expected_count,
|
||||
S *sampled_expected_count, cudaStream_t cuda_stream);
|
||||
void CalUniformCandidateSampler(const int true_size, const int num_sampled, const S prob_val, S *true_expected_count,
|
||||
S *sampled_expected_count, cudaStream_t cuda_stream);
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_UNIFORM_SAMPLER_IMPL_CUH_
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_UNIFORM_CANDIDATE_SAMPLER_IMPL_CUH_
|
|
@ -14,16 +14,16 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/uniform_sampler_gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/nn/uniform_candidate_sampler_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_TWO(UniformSampler,
|
||||
MS_REG_GPU_KERNEL_TWO(UniformCandidateSampler,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
UniformSamplerGpuKernel, int, float)
|
||||
UniformCandidateSamplerGpuKernel, int, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -14,8 +14,8 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_UNIFORM_SAMPLER_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_UNIFORM_SAMPLER_GPU_KERNEL_H_
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_UNIFORM_CANDIDATE_SAMPLER_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_UNIFORM_CANDIDATE_SAMPLER_GPU_KERNEL_H_
|
||||
|
||||
#include <cmath>
|
||||
#include <set>
|
||||
|
@ -23,16 +23,16 @@
|
|||
#include <random>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/uniform_sampler_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/uniform_candidate_sampler_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T, typename S>
|
||||
class UniformSamplerGpuKernel : public GpuKernel {
|
||||
class UniformCandidateSamplerGpuKernel : public GpuKernel {
|
||||
public:
|
||||
UniformSamplerGpuKernel()
|
||||
UniformCandidateSamplerGpuKernel()
|
||||
: num_true_(0), num_sampled_(0), unique_(false), range_max_(0), input_size_(0), remove_accidental_hits_(false) {}
|
||||
~UniformSamplerGpuKernel() override = default;
|
||||
~UniformCandidateSamplerGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
|
@ -61,20 +61,20 @@ class UniformSamplerGpuKernel : public GpuKernel {
|
|||
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(sampled_candidates, &sampled_candidates_[0], sampled_candidates_size,
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync sampled_candidates failed");
|
||||
CalUniformSampler(static_cast<int>(input_size_), num_sampled_, value, true_expected_count, sampled_expected_count,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
CalUniformCandidateSampler(static_cast<int>(input_size_), num_sampled_, value, true_expected_count,
|
||||
sampled_expected_count, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but UniformSampler needs 1 input.";
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but UniformCandidateSampler needs 1 input.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 3) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but UniformSampler has 3 outputs.";
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but UniformCandidateSampler has 3 outputs.";
|
||||
return false;
|
||||
}
|
||||
// getting attrs
|
||||
|
@ -88,7 +88,7 @@ class UniformSamplerGpuKernel : public GpuKernel {
|
|||
generator_.seed(seed);
|
||||
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
if (input_shape.size() != 2) {
|
||||
MS_LOG(ERROR) << "Input is " << input_shape.size() << "-D, but UniformSampler supports only 2-D inputs.";
|
||||
MS_LOG(ERROR) << "Input is " << input_shape.size() << "-D, but UniformCandidateSampler supports only 2-D inputs.";
|
||||
return false;
|
||||
}
|
||||
input_size_ = input_shape[0] * input_shape[1];
|
||||
|
@ -160,4 +160,4 @@ class UniformSamplerGpuKernel : public GpuKernel {
|
|||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_UNIFORM_SAMPLER_GPU_KERNEL_H_
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_UNIFORM_CANDIDATE_SAMPLER_GPU_KERNEL_H_
|
|
@ -303,7 +303,7 @@ class SampledSoftmaxLoss(_Loss):
|
|||
self.sampled_values = sampled_values
|
||||
self.remove_accidental_hits = remove_accidental_hits
|
||||
self.seed = seed
|
||||
self.sampler = P.UniformSampler(
|
||||
self.sampler = P.UniformCandidateSampler(
|
||||
num_true,
|
||||
num_sampled,
|
||||
True,
|
||||
|
|
|
@ -79,7 +79,7 @@ from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, Appl
|
|||
FusedSparseFtrl, FusedSparseProximalAdagrad,
|
||||
ApplyAdaMax, ApplyAdadelta, ApplyAdagrad, ApplyAdagradV2,
|
||||
ApplyAddSign, ApplyPowerSign, ApplyGradientDescent, ApplyProximalGradientDescent,
|
||||
ApplyRMSProp, ApplyCenteredRMSProp, BasicLSTMCell, InTopK, UniformSampler)
|
||||
ApplyRMSProp, ApplyCenteredRMSProp, BasicLSTMCell, InTopK, UniformCandidateSampler)
|
||||
from . import _quant_ops
|
||||
from ._quant_ops import *
|
||||
from .other_ops import (Assign, IOU, BoundingBoxDecode, BoundingBoxEncode, PopulationCount,
|
||||
|
@ -375,7 +375,7 @@ __all__ = [
|
|||
"ApproximateEqual",
|
||||
"InplaceUpdate",
|
||||
"InTopK",
|
||||
"UniformSampler",
|
||||
"UniformCandidateSampler",
|
||||
"LRN",
|
||||
"Mod",
|
||||
"PopulationCount",
|
||||
|
|
|
@ -5820,7 +5820,7 @@ class LRN(PrimitiveWithInfer):
|
|||
return x_shape
|
||||
|
||||
|
||||
class UniformSampler(PrimitiveWithInfer):
|
||||
class UniformCandidateSampler(PrimitiveWithInfer):
|
||||
r"""
|
||||
Uniform candidate sampler.
|
||||
|
||||
|
@ -5848,14 +5848,14 @@ class UniformSampler(PrimitiveWithInfer):
|
|||
sampled_candidates. Shape: (num_sampled, ).
|
||||
|
||||
Examples:
|
||||
>>> sampler = P.UniformSampler(1, 3, False, 4)
|
||||
>>> sampler = P.UniformCandidateSampler(1, 3, False, 4)
|
||||
>>> SampledCandidates, TrueExpectedCount, SampledExpectedCount = sampler(Tensor(np.array([[1],[3],[4],[6],
|
||||
[3]], dtype=np.int32)))
|
||||
[1, 1, 3], [[0.75], [0.75], [0.75], [0.75], [0.75]], [0.75, 0.75, 0.75]
|
||||
"""
|
||||
@prim_attr_register
|
||||
def __init__(self, num_true, num_sampled, unique, range_max, seed=0, remove_accidental_hits=False):
|
||||
"""Initialize UniformSampler"""
|
||||
"""Initialize UniformCandidateSampler"""
|
||||
validator.check_value_type("num_true", num_true, [int], self.name)
|
||||
validator.check_value_type("num_sampled", num_sampled, [int], self.name)
|
||||
validator.check_value_type("unique", unique, [bool], self.name)
|
||||
|
|
|
@ -21,45 +21,55 @@ from mindspore.ops import operations as P
|
|||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
|
||||
class UniformSamplerNet(nn.Cell):
|
||||
class UniformCandidateSamplerNet(nn.Cell):
|
||||
def __init__(self, num_true, num_sampled, unique, range_max):
|
||||
super(UniformSamplerNet, self).__init__()
|
||||
self.sampler = P.UniformSampler(num_true, num_sampled, unique, range_max)
|
||||
super(UniformCandidateSamplerNet, self).__init__()
|
||||
self.sampler = P.UniformCandidateSampler(num_true, num_sampled,
|
||||
unique, range_max)
|
||||
|
||||
def construct(self, x):
|
||||
return self.sampler(x)
|
||||
|
||||
|
||||
def uniform_sampler(x, num_true, num_sampled, unique, range_max):
|
||||
uniform_sampler_net = UniformSamplerNet(num_true, num_sampled, unique, range_max)
|
||||
out1, out2, out3 = uniform_sampler_net(Tensor(x.astype(np.int32)))
|
||||
def uniform_candidate_sampler(x, num_true, num_sampled, unique, range_max):
|
||||
uniform_candidate_sampler_net = UniformCandidateSamplerNet(num_true,
|
||||
num_sampled,
|
||||
unique,
|
||||
range_max)
|
||||
out1, out2, out3 = uniform_candidate_sampler_net(Tensor(x.astype(np.int32)))
|
||||
return out1.shape, out2.shape, out3.shape
|
||||
|
||||
|
||||
class UniformSamplerHitNet(nn.Cell):
|
||||
class UniformCandidateSamplerHitNet(nn.Cell):
|
||||
def __init__(self, num_true, num_sampled, unique, range_max, seed, remove_accidental_hits):
|
||||
super(UniformSamplerHitNet, self).__init__()
|
||||
self.sampler = P.UniformSampler(num_true, num_sampled, unique, range_max, seed=seed,
|
||||
remove_accidental_hits=remove_accidental_hits)
|
||||
super(UniformCandidateSamplerHitNet, self).__init__()
|
||||
self.sampler = P.UniformCandidateSampler(num_true, num_sampled, unique,
|
||||
range_max, seed=seed,
|
||||
remove_accidental_hits=remove_accidental_hits)
|
||||
|
||||
def construct(self, x):
|
||||
return self.sampler(x)
|
||||
|
||||
|
||||
def uniform_sampler_hit(x, num_true, num_sampled, unique, range_max, seed,
|
||||
remove_accidental_hits):
|
||||
uniform_sampler_net = UniformSamplerHitNet(num_true, num_sampled, unique, range_max,
|
||||
seed, remove_accidental_hits)
|
||||
out1, out2, out3 = uniform_sampler_net(Tensor(x.astype(np.int32)))
|
||||
def uniform_candidate_sampler_hit(x, num_true, num_sampled, unique, range_max, seed,
|
||||
remove_accidental_hits):
|
||||
uniform_candidate_sampler_net = UniformCandidateSamplerHitNet(num_true,
|
||||
num_sampled,
|
||||
unique,
|
||||
range_max,
|
||||
seed,
|
||||
remove_accidental_hits)
|
||||
out1, out2, out3 = uniform_candidate_sampler_net(Tensor(x.astype(np.int32)))
|
||||
return out1, out2, out3
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_uniform_sampler_unique_1_true():
|
||||
def test_uniform_candidate_sampler_unique_1_true():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
ms1, ms2, ms3 = uniform_sampler(np.array([[1], [3], [4], [6], [3]]), 1, 3, True, 4)
|
||||
ms1, ms2, ms3 = uniform_candidate_sampler(np.array([[1], [3], [4], [6], [3]]),
|
||||
1, 3, True, 4)
|
||||
expected_1 = (3,)
|
||||
expected_2 = (5, 1)
|
||||
expected_3 = (3,)
|
||||
|
@ -70,9 +80,10 @@ def test_uniform_sampler_unique_1_true():
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_uniform_sampler_not_unique_1_true():
|
||||
def test_uniform_candidate_sampler_not_unique_1_true():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
ms1, ms2, ms3 = uniform_sampler(np.array([[1], [3], [4], [6], [3]]), 1, 3, False, 4)
|
||||
ms1, ms2, ms3 = uniform_candidate_sampler(np.array([[1], [3], [4], [6], [3]]),
|
||||
1, 3, False, 4)
|
||||
expected_1 = (3,)
|
||||
expected_2 = (5, 1)
|
||||
expected_3 = (3,)
|
||||
|
@ -83,9 +94,11 @@ def test_uniform_sampler_not_unique_1_true():
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_uniform_sampler_unique_2_true():
|
||||
def test_uniform_candidate_sampler_unique_2_true():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
ms1, ms2, ms3 = uniform_sampler(np.array([[1, 2], [3, 2], [4, 2], [6, 2], [3, 2]]), 2, 3, True, 4)
|
||||
ms1, ms2, ms3 = uniform_candidate_sampler(np.array([[1, 2], [3, 2], [4, 2],
|
||||
[6, 2], [3, 2]]),
|
||||
2, 3, True, 4)
|
||||
expected_1 = (3,)
|
||||
expected_2 = (5, 2)
|
||||
expected_3 = (3,)
|
||||
|
@ -96,9 +109,12 @@ def test_uniform_sampler_unique_2_true():
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_uniform_sampler_not_unique_2_true():
|
||||
def test_uniform_candidate_sampler_not_unique_2_true():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
ms1, ms2, ms3 = uniform_sampler(np.array([[1, 2], [3, 2], [4, 2], [6, 2], [3, 2]]), 2, 3, False, 4)
|
||||
ms1, ms2, ms3 = uniform_candidate_sampler(np.array([[1, 2], [3, 2],
|
||||
[4, 2], [6, 2],
|
||||
[3, 2]]),
|
||||
2, 3, False, 4)
|
||||
expected_1 = (3,)
|
||||
expected_2 = (5, 2)
|
||||
expected_3 = (3,)
|
||||
|
@ -109,10 +125,14 @@ def test_uniform_sampler_not_unique_2_true():
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_uniform_sampler_large():
|
||||
def test_uniform_candidate_sampler_large():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
ms1, ms2, ms3 = uniform_sampler(np.array([[12221, 41414], [3312, 5125152], [3312454, 51252],
|
||||
[65125, 225125], [35125, 5125122]]), 2, 5, False, 100)
|
||||
ms1, ms2, ms3 = uniform_candidate_sampler(np.array([[12221, 41414],
|
||||
[3312, 5125152],
|
||||
[3312454, 51252],
|
||||
[65125, 225125],
|
||||
[35125, 5125122]]),
|
||||
2, 5, False, 100)
|
||||
expected_1 = (5,)
|
||||
expected_2 = (5, 2)
|
||||
expected_3 = (5,)
|
||||
|
@ -124,9 +144,10 @@ def test_uniform_sampler_large():
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_uniform_sampler_large_random():
|
||||
def test_uniform_candidate_sampler_large_random():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
ms1, ms2, ms3 = uniform_sampler(np.arange(2142).reshape(34, 63), 63, 10, False, 12)
|
||||
ms1, ms2, ms3 = uniform_candidate_sampler(np.arange(2142).reshape(34, 63),
|
||||
63, 10, False, 12)
|
||||
expected_1 = (10,)
|
||||
expected_2 = (34, 63)
|
||||
expected_3 = (10,)
|
||||
|
@ -138,9 +159,9 @@ def test_uniform_sampler_large_random():
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_uniform_sampler_unique_1_true_hit():
|
||||
def test_uniform_candidate_sampler_unique_1_true_hit():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
ms1, _, _ = uniform_sampler_hit(np.array([[1]]), 1, 3, True, 4, 1, False)
|
||||
ms1, _, _ = uniform_candidate_sampler_hit(np.array([[1]]), 1, 3, True, 4, 1, False)
|
||||
expected_1 = np.array([0, 3, 1])
|
||||
np.testing.assert_array_equal(ms1.asnumpy(), expected_1)
|
||||
|
||||
|
@ -148,8 +169,8 @@ def test_uniform_sampler_unique_1_true_hit():
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_uniform_sampler_unique_1_true_no_hit():
|
||||
def test_uniform_candidate_sampler_unique_1_true_no_hit():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
ms1, _, _ = uniform_sampler_hit(np.array([[1]]), 1, 3, True, 4, 1, True)
|
||||
ms1, _, _ = uniform_candidate_sampler_hit(np.array([[1]]), 1, 3, True, 4, 1, True)
|
||||
expected_1 = np.array([0, 3, 2])
|
||||
np.testing.assert_array_equal(ms1.asnumpy(), expected_1)
|
Loading…
Reference in New Issue