forked from mindspore-Ecosystem/mindspore
!7826 new add l2normalize_grad gpu ops.
Merge pull request !7826 from linqingke/gpu_ops
This commit is contained in:
commit
ea4df3c3c2
|
@ -159,19 +159,19 @@ class L2NormalizeGpuKernel : public GpuKernel {
|
|||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnGetTensorSizeInBytes(inputA_descriptor_, &input_size_),
|
||||
"cudnnGetTensorSizeInBytes failed.");
|
||||
input_size_list_.push_back(input_size_);
|
||||
MS_LOG(ERROR) << "input size: " << input_size_;
|
||||
|
||||
output_size_list_.push_back(output_size_);
|
||||
MS_LOG(ERROR) << "output size: " << output_size_;
|
||||
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnGetTensorSizeInBytes(outputC_descriptor_, &workspace_size_),
|
||||
"cudnnGetTensorSizeInBytes failed.");
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
MS_LOG(ERROR) << "workspace_size_1 size: " << workspace_size_;
|
||||
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
cudnnGetReductionWorkspaceSize(cudnn_handle_, reduce_tensor_descriptor_, inputA_descriptor_, outputC_descriptor_,
|
||||
&workspace_size_),
|
||||
"cudnnGetReductionWorkspaceSize failed.");
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
MS_LOG(ERROR) << "workspace_size_2 size: " << workspace_size_;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/gpu/nn/l2normalize_grad_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(L2NormalizeGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
L2NormalizeGradGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(L2NormalizeGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
L2NormalizeGradGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(L2NormalizeGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
L2NormalizeGradGpuKernel, int)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,300 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_L2NORMALIZE_GRAD_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_L2NORMALIZE_GRAD_GPU_KERNEL_H_
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/broadcast_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/l2normalize_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/kernel_constants.h"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
constexpr int MAX_DIMS = 7;
|
||||
constexpr size_t INPUT_SIZE = 3;
|
||||
template <typename T>
|
||||
class L2NormalizeGradGpuKernel : public GpuKernel {
|
||||
public:
|
||||
L2NormalizeGradGpuKernel()
|
||||
: cudnn_handle_(nullptr),
|
||||
data_type_(CUDNN_DATA_FLOAT),
|
||||
nan_prop_(CUDNN_NOT_PROPAGATE_NAN),
|
||||
reduce_indices_(CUDNN_REDUCE_TENSOR_NO_INDICES),
|
||||
reduce_tensor_descriptor_(nullptr),
|
||||
reduce_sum_tensor_descriptor_(nullptr),
|
||||
inputA_descriptor_(nullptr),
|
||||
outputC_descriptor_(nullptr),
|
||||
all_match_(false),
|
||||
is_null_input_(false),
|
||||
output_size_(0),
|
||||
workspace_size_(0),
|
||||
epsilon_(0.0),
|
||||
axis_(0) {}
|
||||
~L2NormalizeGradGpuKernel() override { DestroyResource(); }
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
if (is_null_input_) {
|
||||
return true;
|
||||
}
|
||||
T *x_addr = GetDeviceAddress<T>(inputs, 0);
|
||||
T *y_addr = GetDeviceAddress<T>(inputs, 1);
|
||||
T *dy_addr = GetDeviceAddress<T>(inputs, 2);
|
||||
T *dx_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
T *reduce_workspace_addr = GetDeviceAddress<T>(workspace, 0);
|
||||
T *reduce_y_dy_workspace_addr = GetDeviceAddress<T>(workspace, 1);
|
||||
T *workspace_addr = GetDeviceAddress<T>(workspace, 2);
|
||||
T *workspace_y_dy_addr = GetDeviceAddress<T>(workspace, 3);
|
||||
|
||||
const float alpha = 1;
|
||||
const float beta = 0;
|
||||
|
||||
if (all_match_) {
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(reduce_workspace_addr, x_addr, input_size_list_[0],
|
||||
cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in L2Normalize::Launch.");
|
||||
} else {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
cudnnReduceTensor(cudnn_handle_, reduce_tensor_descriptor_, nullptr, 0, workspace_addr, workspace_size_list_[2],
|
||||
&alpha, inputA_descriptor_, x_addr, &beta, outputC_descriptor_, reduce_workspace_addr),
|
||||
"cudnnReduceTensor failed.");
|
||||
}
|
||||
GetMaxWithEpsAndValue(workspace_size_list_[0] / sizeof(T), epsilon_, reduce_workspace_addr,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
BroadcastArith(output_shape_, output_shape_, output_shape_, BROADCAST_TYPE_MUL, y_addr, dy_addr, dx_addr,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
if (all_match_) {
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(cudaMemcpyAsync(reduce_y_dy_workspace_addr, dx_addr, output_size_list_[0],
|
||||
cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync failed in L2Normalize::Launch.");
|
||||
} else {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
cudnnReduceTensor(cudnn_handle_, reduce_sum_tensor_descriptor_, nullptr, 0, workspace_y_dy_addr,
|
||||
workspace_size_list_[3], &alpha, inputA_descriptor_, dx_addr, &beta, outputC_descriptor_,
|
||||
reduce_y_dy_workspace_addr),
|
||||
"cudnnReduceTensor failed.");
|
||||
}
|
||||
BroadcastArith(rhs_shape_, lhs_shape_, output_shape_, BROADCAST_TYPE_MUL, reduce_y_dy_workspace_addr, y_addr,
|
||||
dx_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
BroadcastArith(output_shape_, output_shape_, output_shape_, BROADCAST_TYPE_SUB, dy_addr, dx_addr, dx_addr,
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
BroadcastArith(output_shape_, rhs_shape_, output_shape_, BROADCAST_TYPE_REALDIV, dx_addr, reduce_workspace_addr,
|
||||
dx_addr, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
InitResource();
|
||||
data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != INPUT_SIZE) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but l2normalize op needs 3 inputs.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but l2normalize op needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
|
||||
int input_dim_length = SizeToInt(AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0).size());
|
||||
int axis = GetAttr<int>(kernel_node, "axis");
|
||||
axis_ = axis < 0 ? (axis + input_dim_length) : axis;
|
||||
|
||||
epsilon_ = GetAttr<float>(kernel_node, "epsilon");
|
||||
|
||||
for (size_t i = 0; i < INPUT_SIZE; i++) {
|
||||
input_shape_list_.emplace_back(AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, i));
|
||||
}
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
for (auto &shape : input_shape_list_) {
|
||||
if (output_shape != shape) {
|
||||
MS_LOG(EXCEPTION) << "Input shape and output shape should be same!";
|
||||
}
|
||||
}
|
||||
|
||||
output_size_ = sizeof(T);
|
||||
for (auto dim : output_shape) {
|
||||
output_size_ *= dim;
|
||||
}
|
||||
|
||||
is_null_input_ = CHECK_NULL_INPUT(input_shape_list_[0]);
|
||||
if (is_null_input_) {
|
||||
MS_LOG(WARNING) << "L2NormalizeGPUKernel input is null";
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
if (input_shape_list_[0].size() > MAX_DIMS) {
|
||||
MS_LOG(EXCEPTION) << "Broadcast operation not support dim greater than 7";
|
||||
}
|
||||
|
||||
std::vector<size_t> output_reduce_shape = output_shape;
|
||||
output_reduce_shape[axis_] = 1;
|
||||
|
||||
lhs_shape_.resize(MAX_DIMS, 1);
|
||||
rhs_shape_.resize(MAX_DIMS, 1);
|
||||
output_shape_.resize(MAX_DIMS, 1);
|
||||
all_match_ = true;
|
||||
for (size_t i = 0; i < output_shape.size(); i++) {
|
||||
output_shape_[i] = output_shape[i];
|
||||
lhs_shape_[i] = output_shape[i];
|
||||
rhs_shape_[i] = output_reduce_shape[i];
|
||||
if (lhs_shape_[i] != rhs_shape_[i]) {
|
||||
all_match_ = false;
|
||||
}
|
||||
}
|
||||
|
||||
InferInAndOutDesc(input_shape_list_[0], output_reduce_shape);
|
||||
InferArrayReduceType(kernel_node);
|
||||
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitResource() override {
|
||||
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateReduceTensorDescriptor(&reduce_tensor_descriptor_),
|
||||
"cudnnCreateReduceTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateReduceTensorDescriptor(&reduce_sum_tensor_descriptor_),
|
||||
"cudnnCreateReduceTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&inputA_descriptor_),
|
||||
"cudnnCreateTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&outputC_descriptor_),
|
||||
"cudnnCreateTensorDescriptor failed.");
|
||||
}
|
||||
void InitSizeLists() override {
|
||||
for (auto &shape : input_shape_list_) {
|
||||
size_t input_size = sizeof(T);
|
||||
for (auto &size : shape) {
|
||||
input_size *= size;
|
||||
}
|
||||
input_size_list_.emplace_back(input_size);
|
||||
}
|
||||
|
||||
output_size_list_.push_back(output_size_);
|
||||
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnGetTensorSizeInBytes(outputC_descriptor_, &workspace_size_),
|
||||
"cudnnGetTensorSizeInBytes failed.");
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
cudnnGetReductionWorkspaceSize(cudnn_handle_, reduce_tensor_descriptor_, inputA_descriptor_, outputC_descriptor_,
|
||||
&workspace_size_),
|
||||
"cudnnGetReductionWorkspaceSize failed.");
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
cudnnGetReductionWorkspaceSize(cudnn_handle_, reduce_sum_tensor_descriptor_, inputA_descriptor_,
|
||||
outputC_descriptor_, &workspace_size_),
|
||||
"cudnnGetReductionWorkspaceSize failed.");
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
private:
|
||||
void DestroyResource() noexcept {
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyReduceTensorDescriptor(reduce_tensor_descriptor_),
|
||||
"cudnnDestroyReduceTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyReduceTensorDescriptor(reduce_sum_tensor_descriptor_),
|
||||
"cudnnDestroyReduceTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(inputA_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(outputC_descriptor_),
|
||||
"cudnnDestroyTensorDescriptor failed.");
|
||||
}
|
||||
void InferArrayReduceType(const CNodePtr &kernel_node) {
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
cudnnSetReduceTensorDescriptor(reduce_tensor_descriptor_, CUDNN_REDUCE_TENSOR_NORM2, CUDNN_DATA_FLOAT, nan_prop_,
|
||||
reduce_indices_, CUDNN_32BIT_INDICES),
|
||||
"cudnnSetReduceTensorDescriptor failed");
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(
|
||||
cudnnSetReduceTensorDescriptor(reduce_sum_tensor_descriptor_, CUDNN_REDUCE_TENSOR_ADD, CUDNN_DATA_FLOAT,
|
||||
nan_prop_, reduce_indices_, CUDNN_32BIT_INDICES),
|
||||
"cudnnSetReduceTensorDescriptor failed");
|
||||
return;
|
||||
}
|
||||
void InferInAndOutDesc(const std::vector<size_t> &input_shape, const std::vector<size_t> &output_shape) {
|
||||
std::vector<size_t> inputA;
|
||||
std::vector<size_t> outputC_shape = output_shape;
|
||||
constexpr int split_dim = 4;
|
||||
|
||||
if (input_shape.size() <= split_dim) {
|
||||
ShapeNdTo4d(input_shape, &inputA);
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensor4dDescriptor(inputA_descriptor_, CUDNN_TENSOR_NCHW, data_type_,
|
||||
inputA[0], inputA[1], inputA[2], inputA[3]),
|
||||
"cudnnSetTensor4dDescriptor failed");
|
||||
} else {
|
||||
CudnnSetTensorNdDescriptor(input_shape, inputA_descriptor_, data_type_);
|
||||
for (auto dim : input_shape) {
|
||||
inputA.emplace_back(dim);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<size_t> outputC;
|
||||
|
||||
if (outputC_shape.size() <= split_dim) {
|
||||
ShapeNdTo4d(outputC_shape, &outputC);
|
||||
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensor4dDescriptor(outputC_descriptor_, CUDNN_TENSOR_NCHW, data_type_,
|
||||
outputC[0], outputC[1], outputC[2], outputC[3]),
|
||||
"cudnnSetTensor4dDescriptor failed");
|
||||
} else {
|
||||
CudnnSetTensorNdDescriptor(outputC_shape, outputC_descriptor_, data_type_);
|
||||
for (auto dim : outputC_shape) {
|
||||
outputC.emplace_back(dim);
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
cudnnHandle_t cudnn_handle_;
|
||||
cudnnDataType_t data_type_;
|
||||
cudnnNanPropagation_t nan_prop_;
|
||||
cudnnReduceTensorIndices_t reduce_indices_;
|
||||
cudnnReduceTensorDescriptor_t reduce_tensor_descriptor_;
|
||||
cudnnReduceTensorDescriptor_t reduce_sum_tensor_descriptor_;
|
||||
cudnnTensorDescriptor_t inputA_descriptor_;
|
||||
cudnnTensorDescriptor_t outputC_descriptor_;
|
||||
|
||||
bool all_match_;
|
||||
bool is_null_input_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
std::vector<std::vector<size_t> > input_shape_list_;
|
||||
size_t output_size_;
|
||||
size_t workspace_size_;
|
||||
float epsilon_;
|
||||
int axis_;
|
||||
std::vector<size_t> lhs_shape_;
|
||||
std::vector<size_t> rhs_shape_;
|
||||
std::vector<size_t> output_shape_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_L2NORMALIZE_GRAD_GPU_KERNEL_H_
|
|
@ -0,0 +1,52 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, axis=0, epsilon=1e-12):
|
||||
super(Net, self).__init__()
|
||||
self.norm_grad = G.L2NormalizeGrad(axis=axis, epsilon=epsilon)
|
||||
|
||||
def construct(self, x, out, dout):
|
||||
return self.norm_grad(x, out, dout)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_l2normalize_grad():
|
||||
axis_ = 0
|
||||
x = np.random.randint(1, 10, (2, 3, 4, 4)).astype(np.float32)
|
||||
y = x / np.sqrt(np.sum(x**2, axis=axis_, keepdims=True))
|
||||
dy = np.random.randint(1, 10, (2, 3, 4, 4)).astype(np.float32)
|
||||
expect = (dy - y * np.sum(y * dy, axis=axis_, keepdims=True)) / np.sqrt(np.sum(x**2, axis=axis_, keepdims=True))
|
||||
x = Tensor(x)
|
||||
y = Tensor(y)
|
||||
dy = Tensor(dy)
|
||||
error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-5
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
norm_grad_op = Net(axis=axis_)
|
||||
output = norm_grad_op(x, y, dy)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert np.all(-diff < error)
|
Loading…
Reference in New Issue