forked from mindspore-Ecosystem/mindspore
!4641 [MS][Quant] bug fix for lenet quant
Merge pull request !4641 from chenzhongming/new_master
This commit is contained in:
commit
e9eee16e46
|
@ -475,8 +475,8 @@ def export(network, *inputs, file_name, mean=127.5, std_dev=127.5, file_format='
|
|||
|
||||
|
||||
def convert_quant_network(network,
|
||||
bn_fold=False,
|
||||
freeze_bn=10000,
|
||||
bn_fold=True,
|
||||
freeze_bn=1e7,
|
||||
quant_delay=(0, 0),
|
||||
num_bits=(8, 8),
|
||||
per_channel=(False, False),
|
||||
|
@ -488,11 +488,11 @@ def convert_quant_network(network,
|
|||
|
||||
Args:
|
||||
network (Cell): Obtain a pipeline through network for saving graph summary.
|
||||
bn_fold (bool): Flag to used bn fold ops for simulation inference operation. Default: False.
|
||||
freeze_bn (int): Number of steps after which BatchNorm OP parameters used total mean and variance. Default: 0.
|
||||
bn_fold (bool): Flag to used bn fold ops for simulation inference operation. Default: True.
|
||||
freeze_bn (int): Number of steps after which BatchNorm OP parameters used total mean and variance. Default: 1e7.
|
||||
quant_delay (int, list or tuple): Number of steps after which weights and activations are quantized during
|
||||
eval. The first element represent weights and second element represent data flow. Default: (0, 0)
|
||||
num_bits (int, list or tuple): Number of bits to use for quantizing weights and activations. The first
|
||||
num_bits (int, list or tuple): Number of bits to use for quantize weights and activations. The first
|
||||
element represent weights and second element represent data flow. Default: (8, 8)
|
||||
per_channel (bool, list or tuple): Quantization granularity based on layer or on channel. If `True`
|
||||
then base on per channel otherwise base on per layer. The first element represent weights
|
||||
|
|
|
@ -35,7 +35,9 @@ class LeNet5(nn.Cell):
|
|||
self.num_class = num_class
|
||||
|
||||
self.conv1 = nn.Conv2d(channel, 6, 5, pad_mode='valid')
|
||||
self.bn1 = nn.BatchNorm2d(6)
|
||||
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
|
||||
self.bn2 = nn.BatchNorm2d(16)
|
||||
self.fc1 = nn.Dense(16 * 5 * 5, 120)
|
||||
self.fc2 = nn.Dense(120, 84)
|
||||
self.fc3 = nn.Dense(84, self.num_class)
|
||||
|
@ -46,9 +48,11 @@ class LeNet5(nn.Cell):
|
|||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.bn2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
|
|
|
@ -36,8 +36,8 @@ class LeNet5(nn.Cell):
|
|||
self.num_class = num_class
|
||||
|
||||
# change `nn.Conv2d` to `nn.Conv2dBnAct`
|
||||
self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', activation='relu')
|
||||
self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', activation='relu')
|
||||
self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', has_bn=True, activation='relu')
|
||||
self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', has_bn=True, activation='relu')
|
||||
# change `nn.Dense` to `nn.DenseBnAct`
|
||||
self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu')
|
||||
self.fc2 = nn.DenseBnAct(120, 84, activation='relu')
|
||||
|
|
|
@ -0,0 +1,61 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Manual construct network for LeNet"""
|
||||
|
||||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""
|
||||
Lenet network
|
||||
|
||||
Args:
|
||||
num_class (int): Num classes. Default: 10.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
Examples:
|
||||
>>> LeNet(num_class=10)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, num_class=10, channel=1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
|
||||
self.conv1 = nn.Conv2dBnFoldQuant(channel, 6, 5, pad_mode='valid', per_channel=True, quant_delay=900)
|
||||
self.conv2 = nn.Conv2dBnFoldQuant(6, 16, 5, pad_mode='valid', per_channel=True, quant_delay=900)
|
||||
self.fc1 = nn.DenseQuant(16 * 5 * 5, 120, per_channel=True, quant_delay=900)
|
||||
self.fc2 = nn.DenseQuant(120, 84, per_channel=True, quant_delay=900)
|
||||
self.fc3 = nn.DenseQuant(84, self.num_class, per_channel=True, quant_delay=900)
|
||||
|
||||
self.relu = nn.ActQuant(nn.ReLU(), per_channel=False, quant_delay=900)
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
|
@ -57,7 +57,7 @@ if __name__ == "__main__":
|
|||
load_param_into_net(network, param_dict)
|
||||
|
||||
# convert fusion network to quantization aware network
|
||||
network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000)
|
||||
network = quant.convert_quant_network(network, quant_delay=900, per_channel=[True, False], symmetric=[False, False])
|
||||
|
||||
# define network loss
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
|
|
Loading…
Reference in New Issue