Merge pull request !25943 from VectorSL/tensor-array-v2
This commit is contained in:
i-robot 2021-11-25 03:57:45 +00:00 committed by Gitee
commit e96f33e887
29 changed files with 1908 additions and 3 deletions

View File

@ -0,0 +1,57 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/rl/tensor_array_clear_kernel.h"
#include "backend/kernel_compiler/common_utils.h"
#include "runtime/device/gpu/gpu_tensor_array.h"
#include "runtime/device/tensor_array_manager.h"
namespace mindspore {
namespace kernel {
using mindspore::device::TensorArrayMgr;
using mindspore::device::gpu::GPUTensorArray;
using mindspore::device::gpu::GPUTensorArrayPtr;
TensorArrayClearKernel::TensorArrayClearKernel() {}
const std::vector<size_t> &TensorArrayClearKernel::GetInputSizeList() const { return input_size_list_; }
const std::vector<size_t> &TensorArrayClearKernel::GetOutputSizeList() const { return output_size_list_; }
const std::vector<size_t> &TensorArrayClearKernel::GetWorkspaceSizeList() const { return workspace_size_list_; }
bool TensorArrayClearKernel::Init(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
InitSizeLists();
return true;
}
void TensorArrayClearKernel::InitSizeLists() {
input_size_list_.push_back(sizeof(int64_t));
output_size_list_.push_back(sizeof(int64_t));
}
bool TensorArrayClearKernel::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &, void *) {
auto handle_addr = GetDeviceAddress<int64_t>(inputs, 0);
GPUTensorArrayPtr tensors_ =
std::dynamic_pointer_cast<GPUTensorArray>(TensorArrayMgr::GetInstance().GetTensorArray(handle_addr));
MS_ERROR_IF_NULL(tensors_);
// Clear TensorArray valid size, but keep the memory.
tensors_->Clear();
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,51 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_CLEAR_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_CLEAR_KERNEL_H_
#include <vector>
#include <string>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class TensorArrayClearKernel : public GpuKernel {
public:
TensorArrayClearKernel();
~TensorArrayClearKernel() = default;
const std::vector<size_t> &GetInputSizeList() const override;
const std::vector<size_t> &GetOutputSizeList() const override;
const std::vector<size_t> &GetWorkspaceSizeList() const override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override;
bool Init(const CNodePtr &kernel_node) override;
protected:
void InitSizeLists() override;
private:
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
MS_REG_GPU_KERNEL(TensorArrayClear, TensorArrayClearKernel)
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_CLEAR_KERNEL_H_

View File

@ -0,0 +1,61 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/rl/tensor_array_close_kernel.h"
#include "backend/kernel_compiler/common_utils.h"
#include "runtime/device/gpu/gpu_tensor_array.h"
#include "runtime/device/tensor_array_manager.h"
namespace mindspore {
namespace kernel {
using mindspore::device::TensorArrayMgr;
using mindspore::device::gpu::GPUTensorArray;
using mindspore::device::gpu::GPUTensorArrayPtr;
TensorArrayCloseKernel::TensorArrayCloseKernel() {}
const std::vector<size_t> &TensorArrayCloseKernel::GetInputSizeList() const { return input_size_list_; }
const std::vector<size_t> &TensorArrayCloseKernel::GetOutputSizeList() const { return output_size_list_; }
const std::vector<size_t> &TensorArrayCloseKernel::GetWorkspaceSizeList() const { return workspace_size_list_; }
bool TensorArrayCloseKernel::Init(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
InitSizeLists();
return true;
}
void TensorArrayCloseKernel::InitSizeLists() {
input_size_list_.push_back(sizeof(int64_t));
output_size_list_.push_back(sizeof(int64_t));
}
bool TensorArrayCloseKernel::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &, void *) {
auto handle_addr = GetDeviceAddress<int64_t>(inputs, 0);
GPUTensorArrayPtr tensors_ =
std::dynamic_pointer_cast<GPUTensorArray>(TensorArrayMgr::GetInstance().GetTensorArray(handle_addr));
MS_ERROR_IF_NULL(tensors_);
// Free device mem
tensors_->Free();
// Erase tensorarray
if (!TensorArrayMgr::GetInstance().EraseTensorArray(handle_addr)) {
MS_LOG(EXCEPTION) << "Free tensorarray failed";
}
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,51 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_CLOSE_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_CLOSE_KERNEL_H_
#include <vector>
#include <string>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class TensorArrayCloseKernel : public GpuKernel {
public:
TensorArrayCloseKernel();
~TensorArrayCloseKernel() = default;
const std::vector<size_t> &GetInputSizeList() const override;
const std::vector<size_t> &GetOutputSizeList() const override;
const std::vector<size_t> &GetWorkspaceSizeList() const override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override;
bool Init(const CNodePtr &kernel_node) override;
protected:
void InitSizeLists() override;
private:
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
MS_REG_GPU_KERNEL(TensorArrayClose, TensorArrayCloseKernel)
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_CLOSE_KERNEL_H_

View File

@ -0,0 +1,73 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <memory>
#include "backend/kernel_compiler/gpu/rl/tensor_array_create_kernel.h"
#include "backend/kernel_compiler/common_utils.h"
#include "runtime/device/gpu/gpu_tensor_array.h"
#include "runtime/device/tensor_array_manager.h"
namespace mindspore {
namespace kernel {
using mindspore::device::TensorArrayMgr;
using mindspore::device::gpu::GPUTensorArray;
using mindspore::device::gpu::GPUTensorArrayPtr;
TensorArrayCreateKernel::TensorArrayCreateKernel() : is_dynamic_(true), size_(0) {}
const std::vector<size_t> &TensorArrayCreateKernel::GetInputSizeList() const { return input_size_list_; }
const std::vector<size_t> &TensorArrayCreateKernel::GetOutputSizeList() const { return output_size_list_; }
const std::vector<size_t> &TensorArrayCreateKernel::GetWorkspaceSizeList() const { return workspace_size_list_; }
bool TensorArrayCreateKernel::Init(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
auto shape = GetAttr<std::vector<int64_t>>(kernel_node, "element_shape");
for (auto i : shape) {
shapes_.push_back(LongToSize(i));
}
type_ = GetAttr<TypePtr>(kernel_node, "dtype");
size_ = GetAttr<int64_t>(kernel_node, "size");
is_dynamic_ = GetAttr<bool>(kernel_node, "dynamic_size");
name_ = GetAttr<std::string>(kernel_node, "name");
InitSizeLists();
return true;
}
void TensorArrayCreateKernel::InitSizeLists() { output_size_list_.push_back(sizeof(int64_t)); }
bool TensorArrayCreateKernel::Launch(const std::vector<AddressPtr> &, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) {
// Create a tensorarray, and generate an unique handle.
int64_t tensor_array_handle = TensorArrayMgr::GetInstance().GetHandleCount();
auto name = "GPUTensorArray_" + name_ + "_" + std::to_string(tensor_array_handle);
GPUTensorArrayPtr tensor_array = std::make_shared<GPUTensorArray>(name, type_, shapes_);
MS_EXCEPTION_IF_NULL(tensor_array);
tensor_array->SetMaxSize(size_, is_dynamic_);
auto out_addr = GetDeviceAddress<int64_t>(outputs, 0);
// Set handle to out_addr.
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(out_addr, &tensor_array_handle, sizeof(int64_t), cudaMemcpyHostToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
"Create TensorArray failed");
MS_LOG(DEBUG) << "Create handle id " << tensor_array_handle;
// Put tensorarray to a saved map : map<handle, tensorarray> in tensorarray manager.
// Only put the device addr as the key to avoid a copy from device to host.
// The output handle address will kept and won't be reused.
TensorArrayMgr::GetInstance().AddTensorArray(out_addr, tensor_array);
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,56 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_CREATE_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_CREATE_KERNEL_H_
#include <vector>
#include <string>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class TensorArrayCreateKernel : public GpuKernel {
public:
TensorArrayCreateKernel();
~TensorArrayCreateKernel() = default;
const std::vector<size_t> &GetInputSizeList() const override;
const std::vector<size_t> &GetOutputSizeList() const override;
const std::vector<size_t> &GetWorkspaceSizeList() const override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override;
bool Init(const CNodePtr &kernel_node) override;
protected:
void InitSizeLists() override;
private:
bool is_dynamic_;
int64_t size_;
std::vector<size_t> shapes_;
TypePtr type_;
std::string name_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
MS_REG_GPU_KERNEL(TensorArray, TensorArrayCreateKernel)
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_CREATE_KERNEL_H_

View File

@ -0,0 +1,79 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/rl/tensor_array_read_kernel.h"
#include "backend/kernel_compiler/common_utils.h"
#include "runtime/device/gpu/gpu_tensor_array.h"
#include "runtime/device/tensor_array_manager.h"
namespace mindspore {
namespace kernel {
using mindspore::device::TensorArrayMgr;
using mindspore::device::gpu::GPUTensorArray;
using mindspore::device::gpu::GPUTensorArrayPtr;
TensorArrayReadKernel::TensorArrayReadKernel() : value_size_(0), type_(nullptr) {}
const std::vector<size_t> &TensorArrayReadKernel::GetInputSizeList() const { return input_size_list_; }
const std::vector<size_t> &TensorArrayReadKernel::GetOutputSizeList() const { return output_size_list_; }
const std::vector<size_t> &TensorArrayReadKernel::GetWorkspaceSizeList() const { return workspace_size_list_; }
bool TensorArrayReadKernel::Init(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
shapes_ = GetAttr<std::vector<int64_t>>(kernel_node, "element_shape");
type_ = GetAttr<TypePtr>(kernel_node, "dtype");
value_size_ = GetTypeByte(type_);
for (auto i : shapes_) {
value_size_ *= i;
}
InitSizeLists();
return true;
}
void TensorArrayReadKernel::InitSizeLists() {
input_size_list_.push_back(sizeof(int64_t));
input_size_list_.push_back(sizeof(int64_t));
output_size_list_.push_back(value_size_);
}
bool TensorArrayReadKernel::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream) {
auto handle_addr = GetDeviceAddress<int64_t>(inputs, 0);
auto index = GetDeviceAddress<int64_t>(inputs, 1);
auto out_value = GetDeviceAddress<unsigned char>(outputs, 0);
MS_ERROR_IF_NULL(out_value);
int64_t index_host = 0;
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(&index_host, index, sizeof(int64_t), cudaMemcpyDeviceToHost,
reinterpret_cast<cudaStream_t>(stream)),
"Get index failed");
GPUTensorArrayPtr tensors_ =
std::dynamic_pointer_cast<GPUTensorArray>(TensorArrayMgr::GetInstance().GetTensorArray(handle_addr));
MS_ERROR_IF_NULL(tensors_);
if (!tensors_->CheckReadIndexLogical(index_host)) {
MS_LOG(EXCEPTION) << "Invalid index " << index_host << " for read.";
}
auto value_addr = tensors_->Read(index_host);
MS_LOG(DEBUG) << "Read value index:" << index_host;
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(out_value, value_addr->addr, value_size_, cudaMemcpyDeviceToDevice,
reinterpret_cast<cudaStream_t>(stream)),
"Get value failed");
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,56 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_READ_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_READ_KERNEL_H_
#include <vector>
#include <string>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class TensorArrayReadKernel : public GpuKernel {
public:
TensorArrayReadKernel();
~TensorArrayReadKernel() = default;
const std::vector<size_t> &GetInputSizeList() const override;
const std::vector<size_t> &GetOutputSizeList() const override;
const std::vector<size_t> &GetWorkspaceSizeList() const override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override;
bool Init(const CNodePtr &kernel_node) override;
protected:
void InitSizeLists() override;
private:
size_t value_size_;
std::vector<int64_t> shapes_;
TypePtr type_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
MS_REG_GPU_KERNEL(TensorArrayRead, TensorArrayReadKernel)
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_READ_KERNEL_H_

View File

@ -0,0 +1,63 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/rl/tensor_array_size_kernel.h"
#include "backend/kernel_compiler/common_utils.h"
#include "runtime/device/gpu/gpu_tensor_array.h"
#include "runtime/device/tensor_array_manager.h"
namespace mindspore {
namespace kernel {
using mindspore::device::TensorArrayMgr;
using mindspore::device::gpu::GPUTensorArray;
using mindspore::device::gpu::GPUTensorArrayPtr;
TensorArraySizeKernel::TensorArraySizeKernel() {}
const std::vector<size_t> &TensorArraySizeKernel::GetInputSizeList() const { return input_size_list_; }
const std::vector<size_t> &TensorArraySizeKernel::GetOutputSizeList() const { return output_size_list_; }
const std::vector<size_t> &TensorArraySizeKernel::GetWorkspaceSizeList() const { return workspace_size_list_; }
bool TensorArraySizeKernel::Init(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
InitSizeLists();
return true;
}
void TensorArraySizeKernel::InitSizeLists() {
input_size_list_.push_back(sizeof(int64_t));
output_size_list_.push_back(sizeof(int64_t));
}
bool TensorArraySizeKernel::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) {
auto handle_addr = GetDeviceAddress<int64_t>(inputs, 0);
auto out_addr = GetDeviceAddress<int64_t>(outputs, 0);
GPUTensorArrayPtr tensors_ =
std::dynamic_pointer_cast<GPUTensorArray>(TensorArrayMgr::GetInstance().GetTensorArray(handle_addr));
MS_ERROR_IF_NULL(tensors_);
int64_t valid_size = SizeToLong(tensors_->GetValidSize());
MS_LOG(DEBUG) << "Launch TensorArraySize, valid size is " << valid_size;
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(out_addr, &valid_size, sizeof(int64_t), cudaMemcpyHostToDevice,
reinterpret_cast<cudaStream_t>(stream_ptr)),
"Get valid size failed");
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,51 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_SIZE_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_SIZE_KERNEL_H_
#include <vector>
#include <string>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class TensorArraySizeKernel : public GpuKernel {
public:
TensorArraySizeKernel();
~TensorArraySizeKernel() = default;
const std::vector<size_t> &GetInputSizeList() const override;
const std::vector<size_t> &GetOutputSizeList() const override;
const std::vector<size_t> &GetWorkspaceSizeList() const override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override;
bool Init(const CNodePtr &kernel_node) override;
protected:
void InitSizeLists() override;
private:
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
MS_REG_GPU_KERNEL(TensorArraySize, TensorArraySizeKernel)
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_SIZE_KERNEL_H_

View File

@ -0,0 +1,107 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/rl/tensor_array_stack_kernel.h"
#include <algorithm>
#include "backend/kernel_compiler/common_utils.h"
#include "runtime/device/gpu/gpu_tensor_array.h"
#include "runtime/device/tensor_array_manager.h"
namespace mindspore {
namespace kernel {
using mindspore::device::TensorArrayMgr;
using mindspore::device::gpu::GPUTensorArray;
using mindspore::device::gpu::GPUTensorArrayPtr;
TensorArrayStackKernel::TensorArrayStackKernel()
: handle_(nullptr), value_size_(0), ele_size_(0), stream_ptr_(nullptr) {
ResetResource();
}
const std::vector<size_t> &TensorArrayStackKernel::GetInputSizeList() const { return input_size_list_; }
const std::vector<size_t> &TensorArrayStackKernel::GetOutputSizeList() const { return output_size_list_; }
const std::vector<size_t> &TensorArrayStackKernel::GetWorkspaceSizeList() const { return workspace_size_list_; }
bool TensorArrayStackKernel::Init(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
kernel_node_ = kernel_node;
auto shape = GetAttr<std::vector<int64_t>>(kernel_node, "element_shape");
auto max_element = GetAttr<int64_t>(kernel_node, "max_element");
for (auto i : shape) {
shapes_.push_back(LongToSize(i));
}
type_ = GetAttr<TypePtr>(kernel_node, "dtype");
ele_size_ = GetTypeByte(type_);
for (auto i : shapes_) {
ele_size_ *= i;
}
value_size_ = ele_size_ * LongToSize(max_element);
InitSizeLists();
return true;
}
void TensorArrayStackKernel::PostExecute() {
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_, cudaStreamSynchronize(reinterpret_cast<cudaStream_t>(stream_ptr_)),
"TensorArrayStack cudaStreamSynchronized failed");
GPUTensorArrayPtr tensors_ =
std::dynamic_pointer_cast<GPUTensorArray>(TensorArrayMgr::GetInstance().GetTensorArray(handle_));
size_t tensor_size = tensors_->GetValidSize();
auto shape = shapes_;
shape.insert(shape.begin(), tensor_size);
MS_LOG(DEBUG) << "After postexecute, the real shape of TensorArrayStack is " << shape;
AnfAlgo::SetOutputInferTypeAndShape({type_->type_id()}, {shape}, kernel_node_.lock().get());
}
void TensorArrayStackKernel::ResetResource() noexcept {
handle_ = nullptr;
value_size_ = 0;
ele_size_ = 0;
stream_ptr_ = nullptr;
shapes_.clear();
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
}
void TensorArrayStackKernel::InitSizeLists() {
output_size_list_.push_back(value_size_);
input_size_list_.push_back(sizeof(int64_t));
}
bool TensorArrayStackKernel::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) {
stream_ptr_ = stream_ptr;
handle_ = GetDeviceAddress<int64_t>(inputs, 0);
auto out_value = GetDeviceAddress<unsigned char>(outputs, 0);
MS_ERROR_IF_NULL(out_value);
GPUTensorArrayPtr tensors_ =
std::dynamic_pointer_cast<GPUTensorArray>(TensorArrayMgr::GetInstance().GetTensorArray(handle_));
if (tensors_->GetValidSize() > tensors_->GetRealSize()) {
MS_LOG(EXCEPTION) << "Invalid TensorArray size, maybe should Clear() TensorArray before next usage.";
}
for (size_t i = 0; i < tensors_->GetValidSize(); i++) {
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(out_value + ele_size_ * i, tensors_->GetTensorAddr(i), ele_size_,
cudaMemcpyDeviceToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"Stack value failed");
}
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,61 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_STACK_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_STACK_KERNEL_H_
#include <string>
#include <vector>
#include <atomic>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class TensorArrayStackKernel : public GpuKernel {
public:
TensorArrayStackKernel();
~TensorArrayStackKernel() = default;
const std::vector<size_t> &GetInputSizeList() const override;
const std::vector<size_t> &GetOutputSizeList() const override;
const std::vector<size_t> &GetWorkspaceSizeList() const override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override;
bool Init(const CNodePtr &kernel_node) override;
void PostExecute() override;
void ResetResource() noexcept override;
protected:
void InitSizeLists() override;
private:
int64_t *handle_;
int64_t value_size_;
int64_t ele_size_;
void *stream_ptr_;
std::vector<size_t> shapes_;
TypePtr type_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
MS_REG_GPU_KERNEL(TensorArrayStack, TensorArrayStackKernel)
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_STACK_KERNEL_H_

View File

@ -0,0 +1,96 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <memory>
#include "backend/kernel_compiler/gpu/rl/tensor_array_write_kernel.h"
#include "backend/kernel_compiler/common_utils.h"
#include "runtime/device/gpu/gpu_tensor_array.h"
#include "runtime/device/tensor_array_manager.h"
namespace mindspore {
namespace kernel {
constexpr size_t kSecondInputIndex = 2;
using mindspore::device::TensorArrayMgr;
using mindspore::device::gpu::GPUTensorArray;
using mindspore::device::gpu::GPUTensorArrayPtr;
TensorArrayWriteKernel::TensorArrayWriteKernel() : value_size_(0) {}
const std::vector<size_t> &TensorArrayWriteKernel::GetInputSizeList() const { return input_size_list_; }
const std::vector<size_t> &TensorArrayWriteKernel::GetOutputSizeList() const { return output_size_list_; }
const std::vector<size_t> &TensorArrayWriteKernel::GetWorkspaceSizeList() const { return workspace_size_list_; }
bool TensorArrayWriteKernel::Init(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
type_ = AnfAlgo::GetInputDeviceDataType(kernel_node, kSecondInputIndex);
shapes_ = AnfAlgo::GetInputDeviceShape(kernel_node, kSecondInputIndex);
value_size_ = GetTypeByte(TypeIdToType(type_));
for (auto i : shapes_) {
value_size_ *= i;
}
InitSizeLists();
return true;
}
void TensorArrayWriteKernel::InitSizeLists() {
input_size_list_.push_back(sizeof(int64_t));
input_size_list_.push_back(sizeof(int64_t));
output_size_list_.push_back(sizeof(int64_t));
}
bool TensorArrayWriteKernel::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs,
const std::vector<AddressPtr> &, void *stream) {
auto handle_addr = GetDeviceAddress<int64_t>(inputs, 0);
auto index = GetDeviceAddress<int64_t>(inputs, 1);
auto value = GetDeviceAddress<unsigned char>(inputs, 2);
int64_t index_host = 0;
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(&index_host, index, sizeof(int64_t), cudaMemcpyDeviceToHost,
reinterpret_cast<cudaStream_t>(stream)),
"Get indexd failed");
GPUTensorArrayPtr tensors_ =
std::dynamic_pointer_cast<GPUTensorArray>(TensorArrayMgr::GetInstance().GetTensorArray(handle_addr));
MS_EXCEPTION_IF_NULL(tensors_);
if (!tensors_->CheckValue(type_, shapes_)) {
MS_LOG(EXCEPTION) << "Invalid input data for tensor array write op.";
}
// Manage the value : create/reuse a device memory, and copy the input value to it.
AddressPtr dev_addr = std::make_shared<kernel::Address>();
MS_EXCEPTION_IF_NULL(dev_addr);
if (tensors_->GetRealSize() > LongToSize(index_host)) {
dev_addr->addr = tensors_->Read(index_host)->addr;
} else {
dev_addr->addr = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(value_size_);
MS_LOG(DEBUG) << "Create tensor " << dev_addr->addr << ", size " << value_size_;
}
MS_EXCEPTION_IF_NULL(dev_addr->addr);
dev_addr->size = value_size_;
CHECK_CUDA_RET_WITH_EXCEPT(kernel_node_,
cudaMemcpyAsync(dev_addr->addr, value, value_size_, cudaMemcpyDeviceToDevice,
reinterpret_cast<cudaStream_t>(stream)),
"Copy value failed");
if (tensors_->Write(index_host, dev_addr)) {
MS_LOG(DEBUG) << "Write to tensorarry succeed, index " << index_host;
} else {
MS_LOG(EXCEPTION) << "Failed to write.";
}
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,55 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_WRITE_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_WRITE_KERNEL_H_
#include <string>
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class TensorArrayWriteKernel : public GpuKernel {
public:
TensorArrayWriteKernel();
~TensorArrayWriteKernel() = default;
const std::vector<size_t> &GetInputSizeList() const override;
const std::vector<size_t> &GetOutputSizeList() const override;
const std::vector<size_t> &GetWorkspaceSizeList() const override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override;
bool Init(const CNodePtr &kernel_node) override;
protected:
void InitSizeLists() override;
private:
size_t value_size_;
std::vector<size_t> shapes_;
TypeId type_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
MS_REG_GPU_KERNEL(TensorArrayWrite, TensorArrayWriteKernel)
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_RL_TENSOR_ARRAY_WRITE_KERNEL_H_

View File

@ -1,7 +1,7 @@
file(GLOB_RECURSE DEVICE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "common/*.cc"
"kernel_info.cc" "executor/dynamic_kernel.cc" "executor/executor_callback.cc" "kernel_runtime.cc"
"memory_manager.cc" "kernel_runtime_manager.cc" "convert_tensor_utils.cc" "memory_scheduler.cc"
"memory_offload_strategy.cc" "bucket.cc" "launch_kernel.cc" "launch_mul.cc"
"memory_offload_strategy.cc" "bucket.cc" "launch_kernel.cc" "launch_mul.cc" "tensor_array.cc"
)
if("${ENABLE_HIDDEN}" STREQUAL "OFF")

View File

@ -0,0 +1,113 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "runtime/device/gpu/gpu_tensor_array.h"
#include <cuda_runtime_api.h>
#include <vector>
#include <string>
#include <memory>
#include "runtime/device/gpu/gpu_common.h"
#include "runtime/device/gpu/gpu_memory_allocator.h"
namespace mindspore {
namespace device {
namespace gpu {
bool GPUTensorArray::CheckValue(const TypeId &dtype, const std::vector<size_t> &shape) {
MS_LOG(DEBUG) << "Check the data shape and type for " << name_;
if (dtype != dtype_->type_id()) {
MS_LOG(ERROR) << "Invalid data type " << TypeIdLabel(dtype) << " for " << name_ << ", the origin type is "
<< TypeIdLabel(dtype_->type_id());
return false;
}
if (shape != shapes_) {
MS_LOG(ERROR) << "Invalid data shape " << shape << " for " << name_ << ", the origin shape is " << shapes_;
return false;
}
return true;
}
bool GPUTensorArray::CheckReadIndexLogical(const int64_t index) {
if (LongToSize(index) >= valid_size_) {
MS_LOG(ERROR) << "Index " << index << " out of range " << valid_size_ << ", " << name_;
return false;
}
return true;
}
// Add tensor to the TensorArray and increase the size.
// Cast 1: is_dynamic = False and index > max_size_, error.
// Case 2: index > valid_size, fill the rest dev_value with zeros, and set valid_size to index + 1.
// Case 3: index == tensors_.size(), we need to increase both real tensors_ size and valid size, and add
// the new dev_value to tensors_.
// Case 4: tensors_size() > index > valid_size, we can reuse the memory in tensors_[index], so
// only increase the valid_size.
bool GPUTensorArray::Write(const int64_t index, const mindspore::kernel::AddressPtr &dev_value) {
MS_LOG(DEBUG) << "Write dev_value to " << name_;
if (!is_dynamic_ && (index >= max_size_)) {
MS_LOG(ERROR) << name_ << " is not in dynamic size, the max_size is " << max_size_ << ", but get index " << index;
return false;
}
if (LongToSize(index) > valid_size_) {
// Create/reuse (index - valid_size) size dev_value with zeros.
// 1 create new mem : index > real_size ? index - real_size : 0
// 2 reuse old mem : index > real_size ? real_size - valid_size : index - valid_size
// 3 fill zeros : index - valid_size
size_t create_size = (LongToSize(index) > tensors_.size()) ? (LongToSize(index) - tensors_.size()) : 0;
for (size_t i = 0; i < create_size; i++) {
kernel::AddressPtr create_dev = std::make_shared<kernel::Address>();
create_dev->addr = device::gpu::GPUMemoryAllocator::GetInstance().AllocTensorMem(dev_value->size);
create_dev->size = dev_value->size;
tensors_.push_back(create_dev);
}
tensors_.push_back(dev_value);
// FillZeros(valid_size_, index);
for (size_t i = valid_size_; i < LongToSize(index); i++) {
CHECK_CUDA_RET_WITH_EXCEPT_NOTRACE(cudaMemsetAsync(tensors_[i]->addr, 0, tensors_[i]->size),
"failed to set cuda memory with zeros.")
}
valid_size_ = LongToSize(index) + 1;
} else if (LongToSize(index) == tensors_.size()) {
MS_LOG(DEBUG) << "Write to index " << index << ", increase tensors' size to " << (tensors_.size() + 1);
tensors_.push_back(dev_value);
valid_size_++;
} else {
MS_LOG(DEBUG) << "Reuse tensors in position " << index << ", tensors size is " << tensors_.size();
if (LongToSize(index) == valid_size_) valid_size_++;
}
return true;
}
// Function Read() can get the tensors in the scope of tensors_.
mindspore::kernel::AddressPtr GPUTensorArray::Read(const int64_t index) {
if (LongToSize(index) >= tensors_.size()) {
MS_LOG(EXCEPTION) << "Index " << index << " out of range " << tensors_.size() << ", " << name_;
}
MS_LOG(DEBUG) << "Read tensor index = " << index << ", addr = " << tensors_[LongToSize(index)]->addr;
return tensors_[LongToSize(index)];
}
// Free() will free the memory in TensorArray.
void GPUTensorArray::Free() {
MS_LOG(DEBUG) << "Free device memory for " << name_;
for (const auto &addr : tensors_) {
if (addr != nullptr) {
device::gpu::GPUMemoryAllocator::GetInstance().FreeTensorMem(static_cast<void *>(addr->addr));
}
}
}
} // namespace gpu
} // namespace device
} // namespace mindspore

View File

@ -0,0 +1,75 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_RUNTIME_DEVICE_GPU_GPU_TENSOR_ARRAY_H_
#define MINDSPORE_CCSRC_RUNTIME_DEVICE_GPU_GPU_TENSOR_ARRAY_H_
#include <vector>
#include <string>
#include <memory>
#include "runtime/device/gpu/gpu_memory_allocator.h"
#include "runtime/device/tensor_array.h"
namespace mindspore {
namespace device {
namespace gpu {
class GPUTensorArray : public TensorArray {
public:
GPUTensorArray(const string &name, const TypePtr &dtype, const std::vector<size_t> &shapes)
: TensorArray(name, dtype, shapes) {}
~GPUTensorArray() override = default;
// Check the dtype and shape of the input data. Used in Write().
bool CheckValue(const TypeId &dtype, const std::vector<size_t> &shape);
// Check the index in valid range. Used in Read().
bool CheckReadIndexLogical(const int64_t index);
// Add tensor to the TensorArray and increase the size.
bool Write(const int64_t index, const mindspore::kernel::AddressPtr &dev_value) override;
// Function Read() can get the tensors in the scope of tensors_.
mindspore::kernel::AddressPtr Read(const int64_t index) override;
// FreeTensorArray() will free the memory in TensorArray.
void Free() override;
// ClearTensorArray() will only set the valid size of TensorArray to zero. The memory in TensorArray is still
// kept, In this situation we can reuse the memory for next use.
void Clear() override { valid_size_ = 0; }
size_t GetValidSize() const override { return valid_size_; }
size_t GetRealSize() const override { return tensors_.size(); }
void *GetTensorAddr(const size_t &index) const { return tensors_[index]->addr; }
void SetMaxSize(const int64_t size, const bool is_dynamic) override {
is_dynamic_ = is_dynamic;
if (!is_dynamic) {
max_size_ = size;
}
}
private:
int64_t max_size_;
bool is_dynamic_;
};
using GPUTensorArray = GPUTensorArray;
using GPUTensorArrayPtr = std::shared_ptr<GPUTensorArray>;
} // namespace gpu
} // namespace device
} // namespace mindspore
#endif // MINDSPORE_CCSRC_RUNTIME_DEVICE_GPU_GPU_TENSOR_ARRAY_H_

View File

@ -0,0 +1,32 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "runtime/device/tensor_array.h"
namespace mindspore {
namespace device {
void TensorArray::Clear() {
valid_size_ = 0;
return;
}
size_t TensorArray::GetRealSize() const { return valid_size_; }
void TensorArray::SetMaxSize(const int64_t size, const bool is_dynamic) {
MS_LOG(DEBUG) << name_ << " use default SetTensorArrayMaxSize, and keep it empty";
return;
}
} // namespace device
} // namespace mindspore

View File

@ -0,0 +1,73 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_RUNTIME_DEVICE_TENSOR_ARRAY_H_
#define MINDSPORE_CCSRC_RUNTIME_DEVICE_TENSOR_ARRAY_H_
#include <vector>
#include <string>
#include <memory>
#include "backend/session/kernel_graph.h"
#include "backend/session/anf_runtime_algorithm.h"
#include "backend/kernel_compiler/kernel.h"
namespace mindspore {
namespace device {
class TensorArray {
public:
// Base TensorArray. Constructed by name, dtype and shapes.
TensorArray(const string &name, const TypePtr &dtype, const std::vector<size_t> &shapes)
: name_(name), dtype_(dtype), shapes_(shapes), valid_size_(0) {}
virtual ~TensorArray() = default;
// Function Write() is used to insert or append dev_value to the position of index.
virtual bool Write(const int64_t index, const mindspore::kernel::AddressPtr &dev_value) = 0;
// Function Read() can get the tensors in the scope of tensors_.
virtual mindspore::kernel::AddressPtr Read(const int64_t index) = 0;
// Free() will free the memory in TensorArray.
virtual void Free() = 0;
// Clear() will only set the valid size of TensorArray to zero. The memory in TensorArray is still
// kept, In this situation we can reuse the memory for next use.
virtual void Clear();
// A vector of tensor address are kept in a TensorArray. For memory reusing, we will keep the addr
// after Clear(), in this time, the valid size will be zero but the real size still kept as
// tensors_.size(). Overall using GetValidSize() to get a logical TensorArray size, and using
// GetRealSize() to get a physical TensorArray size.
virtual size_t GetValidSize() const = 0;
virtual size_t GetRealSize() const;
// This function is used in the situation that is_dynamic == false then set the max size.
// Otherwise, it won't be used and use the default implement.
virtual void SetMaxSize(const int64_t size, const bool is_dynamic);
protected:
std::string name_;
TypePtr dtype_;
std::vector<size_t> shapes_;
size_t valid_size_;
// Using a vector tensors_ to store the dev_tensor_addr from Write().
std::vector<mindspore::kernel::AddressPtr> tensors_;
};
using TensorArray = TensorArray;
using TensorArrayPtr = std::shared_ptr<TensorArray>;
} // namespace device
} // namespace mindspore
#endif // MINDSPORE_CCSRC_RUNTIME_DEVICE_TENSOR_ARRAY_H_

View File

@ -0,0 +1,83 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_RUNTIME_DEVICE_TENSOR_ARRAY_MANAGER_H_
#define MINDSPORE_CCSRC_RUNTIME_DEVICE_TENSOR_ARRAY_MANAGER_H_
#include <vector>
#include <string>
#include <atomic>
#include <utility>
#include <map>
#include "backend/session/kernel_graph.h"
#include "backend/session/anf_runtime_algorithm.h"
#include "runtime/device/tensor_array.h"
namespace mindspore {
namespace device {
class TensorArrayMgr {
public:
// TensorArrayMgr is used to manage the TensorArrays.
TensorArrayMgr() {}
~TensorArrayMgr() = default;
static TensorArrayMgr &GetInstance() noexcept {
static TensorArrayMgr instance;
return instance;
}
TensorArrayMgr(const TensorArrayMgr &) = delete;
TensorArrayMgr(const TensorArrayMgr &&) = delete;
void AddTensorArray(const int64_t *handle, const TensorArrayPtr &ta) {
MS_LOG(DEBUG) << "Add a TensorArray to map, handle addr is " << handle;
tensors_map_.emplace(std::make_pair(handle, ta));
// Increase handle count when added a TensorArray.
tensor_array_handle_count += 1;
}
TensorArrayPtr GetTensorArray(const int64_t *handle) {
if (!tensors_map_.count(handle)) {
MS_LOG(EXCEPTION) << "Error handle [" << handle << "] to get tensorarray";
} else {
MS_LOG(DEBUG) << "Get TensorArray succeed, handle is " << handle;
return tensors_map_[handle];
}
}
bool EraseTensorArray(const int64_t *handle) {
if (tensors_map_.count(handle)) {
MS_LOG(DEBUG) << "Erase tensorarray from map, handle number is " << handle;
tensors_map_.erase(handle);
return true;
} else {
MS_LOG(ERROR) << "Erase failed, no such handle " << handle;
return false;
}
}
int64_t GetHandleCount() const { return tensor_array_handle_count; }
private:
// Store the TensorArrays in a map, as pair(handle_addr, TensorArrayPtr).
std::map<const int64_t *, TensorArrayPtr> tensors_map_;
// Used as an unique handle number for each TensorArray.
std::atomic<int64_t> tensor_array_handle_count{0};
};
} // namespace device
} // namespace mindspore
#endif // MINDSPORE_CCSRC_RUNTIME_DEVICE_TENSOR_ARRAY_MANAGER_H_

View File

@ -291,6 +291,8 @@ AbstractBasePtr InferImplTensorCopySlices(const AnalysisEnginePtr &, const Primi
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplReal(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplTensorArrayStack(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
template <typename T>
AbstractBasePtr InferTupleOrListOrDictLen(const std::string &op_name, const AbstractBasePtrList &args_spec_list) {
// Inputs: a tuple or list or dict.

View File

@ -0,0 +1,61 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <sstream>
#include "ir/dtype.h"
#include "utils/ms_utils.h"
#include "base/core_ops.h"
#include "abstract/param_validator.h"
#include "abstract/infer_functions.h"
#include "abstract/utils.h"
#include "utils/ms_context.h"
#include "utils/symbolic.h"
#include "utils/shape_utils.h"
namespace mindspore {
namespace abstract {
constexpr int64_t kMaxElement = 10000;
AbstractBasePtr InferImplTensorArrayStack(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
// Infer TensorArrayStack
const std::string op_name = primitive->name();
auto attr_shape = primitive->GetAttr("element_shape");
if (attr_shape == nullptr) {
MS_LOG(EXCEPTION) << "No attribute [element_shape] in " << op_name;
}
auto attr_dtype = primitive->GetAttr("dtype");
if (attr_dtype == nullptr) {
MS_LOG(EXCEPTION) << "No attribute [dtype] in " << op_name;
}
auto ele_shape = GetValue<std::vector<int64_t>>(attr_shape);
auto type = GetValue<TypePtr>(attr_dtype);
primitive->set_attr("max_element", MakeValue(kMaxElement));
auto max_shape_ = ele_shape;
auto min_shape_ = ele_shape;
auto out_shape_ = ele_shape;
max_shape_.insert(max_shape_.begin(), kMaxElement);
min_shape_.insert(min_shape_.begin(), 1);
out_shape_.insert(out_shape_.begin(), -1);
ShapeVector out_shape = out_shape_;
ShapeVector min_shape = min_shape_;
ShapeVector max_shape = max_shape_;
auto output = std::make_shared<AbstractTensor>(type, std::make_shared<Shape>(out_shape, min_shape, max_shape));
return output;
}
} // namespace abstract
} // namespace mindspore

View File

@ -236,6 +236,8 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
{prim::kPrimMemCpyAsync, R{InferImplMemCpyAsync, nullptr, true}},
{prim::kPrimFusedPushWeight, R{nullptr, nullptr, true}},
{prim::kPrimFusedPullWeight, R{nullptr, nullptr, true}},
// RL Ops
{prim::kPrimTensorArrayStack, R{InferImplTensorArrayStack, nullptr, true}},
};
return prim_eval_implement_map;
}

View File

@ -761,6 +761,9 @@ inline const PrimitivePtr kPrimDynamicBroadcastGradientArgs =
// Random
inline const PrimitivePtr kPrimStandardNormal = std::make_shared<Primitive>("StandardNormal");
// RL Ops
inline const PrimitivePtr kPrimTensorArrayStack = std::make_shared<Primitive>("TensorArrayStack");
class DoSignaturePrimitive : public Primitive {
public:
explicit DoSignaturePrimitive(const std::string &name, const ValuePtr &function)

View File

@ -17,7 +17,8 @@ Neural Networks Cells.
Pre-defined building blocks or computing units to construct neural networks.
"""
from . import layer, loss, optim, metrics, wrap, grad, probability, sparse, dynamic_lr
from . import layer, loss, optim, metrics, wrap, grad, probability, sparse, dynamic_lr,\
reinforcement
from .learning_rate_schedule import *
from .dynamic_lr import *
from .cell import Cell, GraphKernel, GraphCell
@ -28,7 +29,7 @@ from .metrics import *
from .wrap import *
from .grad import Jvp, Vjp
from .sparse import *
from .reinforcement import *
__all__ = ["Cell", "GraphKernel", "GraphCell"]
__all__.extend(layer.__all__)
@ -40,5 +41,6 @@ __all__.extend(grad.__all__)
__all__.extend(sparse.__all__)
__all__.extend(learning_rate_schedule.__all__)
__all__.extend(dynamic_lr.__all__)
__all__.extend(reinforcement.__all__)
__all__.sort()

View File

@ -0,0 +1,22 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
TensorArray.
"""
from .tensor_array import (TensorArray)
__all__ = [
"TensorArray",
]

View File

@ -0,0 +1,142 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
TensorArray
"""
from mindspore.nn.cell import Cell
from mindspore.ops.operations import _tensor_array as ta
from mindspore._checkparam import Rel, Validator
from mindspore.common import dtype as mstype
class TensorArray(Cell):
r"""TensorArray: a dynamic array to store tensors.
.. warning::
This is an experiential prototype that is subject to change and/or deletion.
Args:
dtype (mindspore.dtype): the data type in the TensorArray.
element_shape (List[int]): the shape of each tensor in a TensorArray.
dynamic_size (bool): if true, the size of TensorArray can be increased. Default: True.
size (int): if dynamic_size=False, `size` means the max_size of the TensorArray.
name (string): the name of this TensorArray. Default: "TA".
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
>>> ta = nn.TensorArray(mindspore.int64, ())
>>> ta.write(0, 1)
>>> ta.write(1, 2)
>>> ans = ta.read(1)
>>> print(ans)
2
>>> s = ta.stack()
>>> print(s)
[1 2]
>>> ta.clear()
>>> ta.write(0, 3)
>>> ans = ta.read(0)
>>> print(ans)
3
>>> ta.close()
"""
def __init__(self, dtype, element_shape, dynamic_size=True, size=0, name="TA"):
"""Initialize TensorArray"""
super(TensorArray, self).__init__()
Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
Validator.check_int(size, 0, Rel.GE, "size", self.cls_name)
self.handle_ = ta.TensorArray(dtype, element_shape, dynamic_size, size, name)()
self.tensor_array_write = ta.TensorArrayWrite()
self.tensor_array_read = ta.TensorArrayRead(dtype, element_shape)
self.tensor_array_close = ta.TensorArrayClose()
self.tensor_array_clear = ta.TensorArrayClear()
self.tensor_array_stack = ta.TensorArrayStack(dtype, element_shape)
self.tensor_array_size = ta.TensorArraySize()
def write(self, index, value):
"""
Write value(Tensor) to TensorArray in position index.
Args:
index ([int, mindspore.int64]): The position to write.
value (Tensor): The value to add into the TensorArray.
Returns:
Bool, true.
"""
self.tensor_array_write(self.handle_, index, value)
return True
def read(self, index):
"""
Read tensor form the TensorArray by the given position index.
Args:
index ([int, mindspore.int64]): The given index to get the tensor.
Returns:
Tensor, the value in position index.
"""
value = self.tensor_array_read(self.handle_, index)
return value
def close(self):
"""
Close the created TensorArray.
.. warning::
Once close the TensorArray, every functions belong to this TensorArray will be disaviliable.
Every resources created in TensorArray will be removed. If this TensorArray will be used in next step
or somewhere, eg: next loop, please use `clear` instead.
Returns:
Bool, true.
"""
self.tensor_array_close(self.handle_)
return True
def clear(self):
"""
Clear the created TensorArray. Only reset the TensorArray, clear the data and reset the size
in TensorArray and keep the instance of this TensorArray.
Returns:
Bool, true.
"""
self.tensor_array_clear(self.handle_)
return True
def stack(self):
"""
Stack the values in TensorArray into a stacked Tensor.
Returns:
Tensor, all the values will be stacked into one tensor.
"""
ans = self.tensor_array_stack(self.handle_)
return ans
def size(self):
"""
The logical size of TensorArray.
Returns:
Tensor, the size of TensorArray.
"""
size = self.tensor_array_size(self.handle_)
return size

View File

@ -0,0 +1,285 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Operators for TensorArray."""
import mindspore as ms
from ..._checkparam import Validator as validator
from ..._checkparam import Rel
from ...common import dtype as mstype
from ..primitive import prim_attr_register, PrimitiveWithInfer, Primitive
class TensorArray(PrimitiveWithInfer):
r"""
TensorArrayCreate used to create a TensorArray and return an unique handle.
Args:
dtype (mindspore.dtype): the data type in the TensorArray.
element_shape (List[int]): the shape of each tensor in a TensorArray.
dynamic_size (bool): If true the TensorArray can increase the size. Default: True.
size (int): The size of the TensorArray if dynamic_size = False.
name (string): the name of this TensorArray. Default: "TA".
Inputs:
None.
Outputs:
- **output** (Tensor[mindspore.int64]) - an unique handle binded to the TensorArray.
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.ops as ops
>>> create_op = ops.TensorArray(mindspore.int32, ())
>>> handle = create_op()
>>> print(handle)
0
"""
@prim_attr_register
def __init__(self, dtype, element_shape, dynamic_size=True, size=0, name="TA"):
validator.check_type_name("dtype", dtype, mstype.number_type, self.name)
validator.check_int(size, 0, Rel.GE, "size", self.name)
self.add_prim_attr('dtype', dtype)
self.add_prim_attr('element_shape', element_shape)
self.add_prim_attr('dynamic_size', dynamic_size)
self.add_prim_attr('size', size)
self.add_prim_attr('side_effect_mem', True)
self.add_prim_attr('name', name)
def infer_shape(self):
return ()
def infer_dtype(self):
return mstype.int64
class TensorArrayWrite(PrimitiveWithInfer):
r"""
TensorArrayWrite used to write tensor into a created TensorArray.
Inputs:
- **index** (Tensor[int64]) - The position to write.
- **value** (Tensor) - The value to add into the TensorArray.
- **handle** (Tensor[int64]) - The handle pointed to the TensorArray.
Outputs:
None.
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.ops as ops
>>> create_op = ops.TensorArray(mindspore.int32, ())
>>> handle = create_op()
>>> write_op = ops.TensorArrayWrite()
>>> write_op.write(handle, 0, 1)
"""
@prim_attr_register
def __init__(self):
self.add_prim_attr('side_effect_mem', True)
def infer_shape(self, handle_shape, index_shape, value_shape):
return ()
def infer_dtype(self, handle_type, index_type, value_type):
validator.check_type_name("handle", handle_type, (ms.int64), self.name)
validator.check_type_name("index", index_type, (int, ms.int64), self.name)
validator.check_type_name("value", value_type, mstype.number_type, self.name)
return mstype.int64
class TensorArrayRead(PrimitiveWithInfer):
r"""
TensorArrayRead used to read tensor from a created TensorArray by the given index.
Args:
dtype (mindspore.dtype): the data type in the TensorArray.
element_shape (List[int]): the shape of each tensor in a TensorArray.
Inputs:
- **index** (Tensor[int64]) - The position to read.
- **handle** (mindspore.int64) - The handle pointed to the TensorArray.
Outputs:
- **output** (Tensor) - the value in position index.
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.ops as ops
>>> create_op = ops.TensorArray(mindspore.int32, ())
>>> handle = create_op()
>>> write_op = ops.TensorArrayWrite()
>>> write_op.write(handle, 0, 1)
>>> read_op = ops.TensorArrayRead(mindspore.int32, ())
>>> ans = read_op(handle, 0)
>>> print(ans)
1
"""
@prim_attr_register
def __init__(self, dtype, element_shape):
validator.check_type_name("dtype", dtype, mstype.number_type, self.name)
self.add_prim_attr('dtype', dtype)
self.add_prim_attr('element_shape', element_shape)
self.add_prim_attr('side_effect_mem', True)
self.dtype = dtype
self.shape = element_shape
def infer_shape(self, handle_shape, index_shape):
return self.shape
def infer_dtype(self, handle_type, index_type):
validator.check_type_name("handle", handle_type, (ms.int64), self.name)
validator.check_type_name("index", index_type, (int, ms.int64), self.name)
return self.dtype
class TensorArrayClose(PrimitiveWithInfer):
r"""
TensorArrayClose used to close the created TensorArray. The resources in TensorArray will be deleted.
Inputs:
- **handle** (mindspore.int64) - The handle pointed to the TensorArray.
Outputs:
None.
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.ops as ops
>>> create_op = ops.TensorArray(mindspore.int32, ())
>>> handle = create_op()
>>> close_op = ops.TensorArrayClose()
>>> close_op(handle)
"""
@prim_attr_register
def __init__(self):
self.add_prim_attr('side_effect_mem', True)
def infer_shape(self, handle_shape):
return ()
def infer_dtype(self, handle_type):
validator.check_type_name("handle", handle_type, (ms.int64), self.name)
return mstype.int64
class TensorArrayClear(PrimitiveWithInfer):
r"""
TensorArrayClear used to reset the created TensorArray. The instance of TensorArray is still aviliable.
Inputs:
- **handle** (mindspore.int64) - The handle pointed to the TensorArray.
Outputs:
None.
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.ops as ops
>>> create_op = ops.TensorArray(mindspore.int32, ())
>>> handle = create_op()
>>> clear_op = ops.TensorArrayClear()
>>> clear_op(handle)
"""
@prim_attr_register
def __init__(self):
self.add_prim_attr('side_effect_mem', True)
def infer_shape(self, handle_shape):
return ()
def infer_dtype(self, handle_type):
validator.check_type_name("handle", handle_type, (ms.int64), self.name)
return mstype.int64
class TensorArrayStack(Primitive):
r"""
TensorArrayStack used to stack the tensors in a created TensorArray into one tensor.
Args:
dtype (mindspore.dtype): the data type in the TensorArray.
element_shape (List[int]): the shape of each tensor in a TensorArray.
Inputs:
- **handle** (mindspore.int64) - The handle pointed to the TensorArray.
Outputs:
- **output** (Tensor) - the stacked value from the TensorArray.
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.ops as ops
>>> create_op = ops.TensorArray(mindspore.int32, ())
>>> handle = create_op()
>>> write_op = ops.TensorArrayWrite()
>>> write_op.write(handle, 0, 1)
>>> write_op.write(handle, 1, 2)
>>> stack_op = ops.TensorArrayStack(mindspore.int32, ())
>>> ans = stack_op(handle)
>>> print(ans)
[1 2]
"""
@prim_attr_register
def __init__(self, dtype, element_shape):
"""Initialize TensorArrayStack"""
self.init_prim_io_names(inputs=[''], outputs=['output'])
self.add_prim_attr('dtype', dtype)
self.add_prim_attr('element_shape', element_shape)
self.add_prim_attr('is_dynamic_shape', True)
self.add_prim_attr('side_effect_mem', True)
class TensorArraySize(PrimitiveWithInfer):
r"""
TensorArraySize used to get the logical size of the created TensorArray.
Inputs:
- **handle** (mindspore.int64) - The handle pointed to the TensorArray.
Outputs:
- **output** (Tensor[mindspore.int64]) - the logical size of the TensorArray.
Supported Platforms:
``GPU``
Examples:
>>> import mindspore
>>> import mindspore.ops as ops
>>> create_op = ops.TensorArray(mindspore.int32, ())
>>> handle = create_op()
>>> size_op = ops.TensorArraySize()
>>> size = size_op(handle)
"""
@prim_attr_register
def __init__(self):
self.add_prim_attr('side_effect_mem', True)
def infer_shape(self, handle_shape):
return ()
def infer_dtype(self, handle_type):
validator.check_type_name("handle", handle_type, (ms.int64), self.name)
return mstype.int64

View File

@ -0,0 +1,93 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
class TensorArrayNet(nn.Cell):
def __init__(self, dtype, element_shape):
super(TensorArrayNet, self).__init__()
self.ta = nn.TensorArray(dtype, element_shape)
def construct(self, index, value):
for i in range(2):
for _ in range(10):
self.ta.write(index, value)
index += 1
value += 1
if i == 0:
self.ta.clear()
index = 0
v = self.ta.read(index-1)
s = self.ta.stack()
self.ta.close()
return v, s
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tensorarray():
"""
Feature: TensorArray gpu TEST.
Description: Test the function write, read, stack, clear, close in both graph and pynative mode.
Expectation: success.
"""
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
index = Tensor(0, mindspore.int64)
value = Tensor(5, mindspore.int64)
ta = TensorArrayNet(dtype=mindspore.int64, element_shape=())
v, s = ta(index, value)
expect_v = 24
expect_s = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
assert np.allclose(s.asnumpy(), expect_s)
assert np.allclose(v.asnumpy(), expect_v)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
ta = nn.TensorArray(mindspore.int64, ())
for i in range(5):
ta.write(i, 99)
v = ta.read(0)
s = ta.stack()
expect_v = 99
expect_s = [99, 99, 99, 99, 99]
assert np.allclose(s.asnumpy(), expect_s)
assert np.allclose(v.asnumpy(), expect_v)
ta_size = ta.size()
assert np.allclose(ta_size.asnumpy(), 5)
ta.clear()
ta_size = ta.size()
assert np.allclose(ta_size.asnumpy(), 0)
ta.write(0, 88)
v = ta.read(0)
s = ta.stack()
ta.close()
expect_v = 88
expect_s = [88]
assert np.allclose(s.asnumpy(), expect_s)
assert np.allclose(v.asnumpy(), expect_v)
ta = nn.TensorArray(mindspore.float32, ())
ta.write(5, 1.)
s = ta.stack()
expect_s = [0., 0., 0., 0., 0., 1.]
assert np.allclose(s.asnumpy(), expect_s)
ta.write(2, 1.)
s = ta.stack()
expect_s = [0., 0., 1., 0., 0., 1.]
assert np.allclose(s.asnumpy(), expect_s)
ta.close()