test_micro_batch_Interleaved

This commit is contained in:
lilei 2021-12-05 10:04:39 +08:00
parent c88da99f77
commit e933aa268b
5 changed files with 168 additions and 4 deletions

View File

@ -545,7 +545,8 @@ AnfNodePtr GetPreNode(const AnfNodePtr &node) {
continue;
}
(void)node_queue.erase(node_queue.begin());
if (!IsInEndNodeBlackList(cur_node) && cur_node->HasPrimalAttr(NEED_GRAD)) {
auto prim = GetCNodePrimitive(cur_node);
if (!IsInEndNodeBlackList(cur_node) && cur_node->HasPrimalAttr(NEED_GRAD) && !prim->HasAttr("realdiv_flag")) {
MS_LOG(INFO) << "Pipeline End node: " << cur_node->DebugString();
return cur_node;
}

View File

@ -18,7 +18,7 @@ Wrap cells for networks.
Use the Wrapper to combine the loss or build the training steps.
"""
from .cell_wrapper import ForwardValueAndGrad, TrainOneStepCell, WithLossCell, WithGradCell, WithEvalCell, \
ParameterUpdate, GetNextSingleOp, VirtualDatasetCellTriple, PipelineCell
ParameterUpdate, GetNextSingleOp, VirtualDatasetCellTriple, MicroBatchInterleaved, PipelineCell
from .loss_scale import TrainOneStepWithLossScaleCell, DynamicLossScaleUpdateCell, FixedLossScaleUpdateCell
from .grad_reducer import DistributedGradReducer
from ..layer.timedistributed import TimeDistributed
@ -30,6 +30,7 @@ __all__ = [
"TrainOneStepCell",
"WithLossCell",
"WithGradCell",
"MicroBatchInterleaved",
"PipelineCell",
"WithEvalCell",
"GetNextSingleOp",

View File

@ -480,6 +480,7 @@ class MicroBatchInterleaved(Cell):
self.network = network
self.interleave_num = interleave_num
self.interleave_inputs = nn.CellList()
self.realdiv = P.RealDiv().add_prim_attr("realdiv_flag", True)
for _ in range(interleave_num):
interleave_data = _MicroBatch(interleave_num)
interleave_data.strided_slice.add_prim_attr("strided_slice_flag", True)
@ -490,7 +491,7 @@ class MicroBatchInterleaved(Cell):
for i in range(self.interleave_num):
interleave_input = self.interleave_inputs[i](i, *inputs)
output += self.network(*interleave_input)
return output / self.interleave_num
return self.realdiv(output, self.interleave_num)
class PipelineCell(Cell):

View File

@ -0,0 +1,71 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor, context
from mindspore.ops import operations as P
from mindspore.common.api import _cell_graph_executor
from mindspore.nn.wrap.cell_wrapper import MicroBatchInterleaved
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):
super().__init__()
self.matmul1 = P.MatMul().shard(strategy1)
self.matmul2 = P.MatMul().shard(strategy2)
def construct(self, x, y, b):
out = self.matmul1(x, y)
out = self.matmul2(out, b)
return out
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = P.ReLU()
self.network = network
def construct(self, x, y, b):
predict = self.network(x, y, b)
return self.loss(predict)
def compile_net(net, x, y, b):
net.set_auto_parallel()
net.set_train()
_cell_graph_executor.compile(net, x, y, b)
def test_micro_batch_interleaved():
"""
Feature: test MicroBatchInterleaved in auto parallel.
Description: net with MicroBatchInterleaved in semi auto parallel.
Expectation: compile done without error.
"""
context.set_context(mode=context.GRAPH_MODE)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
context.set_auto_parallel_context(device_num=8, global_rank=0, gradients_mean=True)
strategy1 = ((4, 2), (2, 1))
strategy2 = ((2, 4), (4, 1))
micro_batch_interleaved = 2
net = MicroBatchInterleaved(NetWithLoss(Net(strategy1, strategy2)), micro_batch_interleaved)
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
y = Tensor(np.ones([32 * micro_batch_interleaved, 64]), dtype=ms.float32)
b = Tensor(np.ones([64 * micro_batch_interleaved, 64]), dtype=ms.float32)
compile_net(net, x, y, b)

View File

@ -21,7 +21,7 @@ from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
from mindspore.train.model import Model
from mindspore.nn.wrap.cell_wrapper import PipelineCell
from mindspore.nn.wrap.cell_wrapper import PipelineCell, MicroBatchInterleaved
class DatasetLenet():
@ -263,3 +263,93 @@ def test_pipeline_split_shared_parameter_stage1_opt_shard():
optimizer = nn.Lamb(params, learning_rate=0.01)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)
def test_pipeline_split_with_micro_batch_interleaved_stage0():
"""
Feature: test PipelineSplit with MicroBatchInterleaved in auto parallel.
Description: net with MicroBatchInterleaved in semi auto parallel.
Expectation: success.
"""
context.set_auto_parallel_context(device_num=8, global_rank=0, pipeline_stages=2)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
strategy1 = ((4, 1), (1, 1))
strategy2 = ((2, 1), (1, 1))
micro_batch_interleaved = 2
net = PipelineCell(MicroBatchInterleaved(PipelineSplit(strategy1, strategy2), micro_batch_interleaved), 4)
params = net.network.network.cell.block[0].trainable_params()
dataset = DatasetLenet(data, label, 3)
optimizer = nn.Lamb(params, learning_rate=0.01)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)
for _, param in model._train_network.parameters_and_names():
assert param.name != "cell.block.1.param"
assert param.name != "cell.block.1.param1"
def test_pipeline_split_with_micro_batch_interleaved_stage1():
"""
Feature: test PipelineSplit with MicroBatchInterleaved in auto parallel.
Description: net with MicroBatchInterleaved in semi auto parallel.
Expectation: success.
"""
context.set_auto_parallel_context(device_num=8, global_rank=4, pipeline_stages=2)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
strategy1 = ((4, 1), (1, 1))
strategy2 = ((2, 1), (1, 1))
micro_batch_interleaved = 2
net = PipelineCell(MicroBatchInterleaved(PipelineSplit(strategy1, strategy2), micro_batch_interleaved), 4)
params = net.network.network.cell.block[1].trainable_params()
dataset = DatasetLenet(data, label, 3)
optimizer = nn.Lamb(params, learning_rate=0.01)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)
for _, param in model._train_network.parameters_and_names():
assert param.name != "cell.block.0.param"
assert param.name != "cell.block.0.param1"
def test_pipeline_split_shared_parameter_with_micro_batch_interleaved_stage0_opt_shard():
"""
Feature: test PipelineSplitSharedParameter with MicroBatchInterleaved in auto parallel.
Description: net with MicroBatchInterleaved in semi auto parallel.
Expectation: success.
"""
context.set_auto_parallel_context(device_num=8, global_rank=0, pipeline_stages=2, enable_parallel_optimizer=True)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
strategy1 = ((4, 1), (1, 1))
strategy2 = ((2, 1), (1, 1))
micro_batch_interleaved = 2
net = PipelineCell(MicroBatchInterleaved(PipelineSplit2(strategy1, strategy2), micro_batch_interleaved), 4)
params = net.network.network.cell.block[0].trainable_params()
dataset = DatasetLenet(data, label, 3)
optimizer = nn.Lamb(params, learning_rate=0.01)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)
def test_pipeline_split_shared_parameter_with_micro_batch_interleaved_stage1_opt_shard():
"""
Feature: test PipelineSplitSharedParameter with MicroBatchInterleaved in auto parallel.
Description: net with MicroBatchInterleaved in semi auto parallel.
Expectation: success.
"""
context.set_auto_parallel_context(device_num=8, global_rank=4, pipeline_stages=2, enable_parallel_optimizer=True)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
strategy1 = ((4, 1), (1, 1))
strategy2 = ((2, 1), (1, 1))
micro_batch_interleaved = 2
net = PipelineCell(MicroBatchInterleaved(PipelineSplit2(strategy1, strategy2), micro_batch_interleaved), 4)
params = net.network.network.cell.block[1].trainable_params()
dataset = DatasetLenet(data, label, 3)
optimizer = nn.Lamb(params, learning_rate=0.01)
model = Model(net, optimizer=optimizer)
model.train(2, dataset, dataset_sink_mode=False)