forked from mindspore-Ecosystem/mindspore
test_micro_batch_Interleaved
This commit is contained in:
parent
c88da99f77
commit
e933aa268b
|
@ -545,7 +545,8 @@ AnfNodePtr GetPreNode(const AnfNodePtr &node) {
|
|||
continue;
|
||||
}
|
||||
(void)node_queue.erase(node_queue.begin());
|
||||
if (!IsInEndNodeBlackList(cur_node) && cur_node->HasPrimalAttr(NEED_GRAD)) {
|
||||
auto prim = GetCNodePrimitive(cur_node);
|
||||
if (!IsInEndNodeBlackList(cur_node) && cur_node->HasPrimalAttr(NEED_GRAD) && !prim->HasAttr("realdiv_flag")) {
|
||||
MS_LOG(INFO) << "Pipeline End node: " << cur_node->DebugString();
|
||||
return cur_node;
|
||||
}
|
||||
|
|
|
@ -18,7 +18,7 @@ Wrap cells for networks.
|
|||
Use the Wrapper to combine the loss or build the training steps.
|
||||
"""
|
||||
from .cell_wrapper import ForwardValueAndGrad, TrainOneStepCell, WithLossCell, WithGradCell, WithEvalCell, \
|
||||
ParameterUpdate, GetNextSingleOp, VirtualDatasetCellTriple, PipelineCell
|
||||
ParameterUpdate, GetNextSingleOp, VirtualDatasetCellTriple, MicroBatchInterleaved, PipelineCell
|
||||
from .loss_scale import TrainOneStepWithLossScaleCell, DynamicLossScaleUpdateCell, FixedLossScaleUpdateCell
|
||||
from .grad_reducer import DistributedGradReducer
|
||||
from ..layer.timedistributed import TimeDistributed
|
||||
|
@ -30,6 +30,7 @@ __all__ = [
|
|||
"TrainOneStepCell",
|
||||
"WithLossCell",
|
||||
"WithGradCell",
|
||||
"MicroBatchInterleaved",
|
||||
"PipelineCell",
|
||||
"WithEvalCell",
|
||||
"GetNextSingleOp",
|
||||
|
|
|
@ -480,6 +480,7 @@ class MicroBatchInterleaved(Cell):
|
|||
self.network = network
|
||||
self.interleave_num = interleave_num
|
||||
self.interleave_inputs = nn.CellList()
|
||||
self.realdiv = P.RealDiv().add_prim_attr("realdiv_flag", True)
|
||||
for _ in range(interleave_num):
|
||||
interleave_data = _MicroBatch(interleave_num)
|
||||
interleave_data.strided_slice.add_prim_attr("strided_slice_flag", True)
|
||||
|
@ -490,7 +491,7 @@ class MicroBatchInterleaved(Cell):
|
|||
for i in range(self.interleave_num):
|
||||
interleave_input = self.interleave_inputs[i](i, *inputs)
|
||||
output += self.network(*interleave_input)
|
||||
return output / self.interleave_num
|
||||
return self.realdiv(output, self.interleave_num)
|
||||
|
||||
|
||||
class PipelineCell(Cell):
|
||||
|
|
|
@ -0,0 +1,71 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, context
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.api import _cell_graph_executor
|
||||
from mindspore.nn.wrap.cell_wrapper import MicroBatchInterleaved
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2):
|
||||
super().__init__()
|
||||
self.matmul1 = P.MatMul().shard(strategy1)
|
||||
self.matmul2 = P.MatMul().shard(strategy2)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
out = self.matmul1(x, y)
|
||||
out = self.matmul2(out, b)
|
||||
return out
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = P.ReLU()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
predict = self.network(x, y, b)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_cell_graph_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
def test_micro_batch_interleaved():
|
||||
"""
|
||||
Feature: test MicroBatchInterleaved in auto parallel.
|
||||
Description: net with MicroBatchInterleaved in semi auto parallel.
|
||||
Expectation: compile done without error.
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, gradients_mean=True)
|
||||
strategy1 = ((4, 2), (2, 1))
|
||||
strategy2 = ((2, 4), (4, 1))
|
||||
micro_batch_interleaved = 2
|
||||
net = MicroBatchInterleaved(NetWithLoss(Net(strategy1, strategy2)), micro_batch_interleaved)
|
||||
|
||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32 * micro_batch_interleaved, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64 * micro_batch_interleaved, 64]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x, y, b)
|
|
@ -21,7 +21,7 @@ from mindspore.ops import operations as P
|
|||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.nn.wrap.cell_wrapper import PipelineCell
|
||||
from mindspore.nn.wrap.cell_wrapper import PipelineCell, MicroBatchInterleaved
|
||||
|
||||
|
||||
class DatasetLenet():
|
||||
|
@ -263,3 +263,93 @@ def test_pipeline_split_shared_parameter_stage1_opt_shard():
|
|||
optimizer = nn.Lamb(params, learning_rate=0.01)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
model.train(2, dataset, dataset_sink_mode=False)
|
||||
|
||||
|
||||
def test_pipeline_split_with_micro_batch_interleaved_stage0():
|
||||
"""
|
||||
Feature: test PipelineSplit with MicroBatchInterleaved in auto parallel.
|
||||
Description: net with MicroBatchInterleaved in semi auto parallel.
|
||||
Expectation: success.
|
||||
"""
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, pipeline_stages=2)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
strategy1 = ((4, 1), (1, 1))
|
||||
strategy2 = ((2, 1), (1, 1))
|
||||
micro_batch_interleaved = 2
|
||||
net = PipelineCell(MicroBatchInterleaved(PipelineSplit(strategy1, strategy2), micro_batch_interleaved), 4)
|
||||
params = net.network.network.cell.block[0].trainable_params()
|
||||
dataset = DatasetLenet(data, label, 3)
|
||||
optimizer = nn.Lamb(params, learning_rate=0.01)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
model.train(2, dataset, dataset_sink_mode=False)
|
||||
for _, param in model._train_network.parameters_and_names():
|
||||
assert param.name != "cell.block.1.param"
|
||||
assert param.name != "cell.block.1.param1"
|
||||
|
||||
|
||||
def test_pipeline_split_with_micro_batch_interleaved_stage1():
|
||||
"""
|
||||
Feature: test PipelineSplit with MicroBatchInterleaved in auto parallel.
|
||||
Description: net with MicroBatchInterleaved in semi auto parallel.
|
||||
Expectation: success.
|
||||
"""
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=4, pipeline_stages=2)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
strategy1 = ((4, 1), (1, 1))
|
||||
strategy2 = ((2, 1), (1, 1))
|
||||
micro_batch_interleaved = 2
|
||||
net = PipelineCell(MicroBatchInterleaved(PipelineSplit(strategy1, strategy2), micro_batch_interleaved), 4)
|
||||
params = net.network.network.cell.block[1].trainable_params()
|
||||
dataset = DatasetLenet(data, label, 3)
|
||||
optimizer = nn.Lamb(params, learning_rate=0.01)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
model.train(2, dataset, dataset_sink_mode=False)
|
||||
for _, param in model._train_network.parameters_and_names():
|
||||
assert param.name != "cell.block.0.param"
|
||||
assert param.name != "cell.block.0.param1"
|
||||
|
||||
|
||||
def test_pipeline_split_shared_parameter_with_micro_batch_interleaved_stage0_opt_shard():
|
||||
"""
|
||||
Feature: test PipelineSplitSharedParameter with MicroBatchInterleaved in auto parallel.
|
||||
Description: net with MicroBatchInterleaved in semi auto parallel.
|
||||
Expectation: success.
|
||||
"""
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, pipeline_stages=2, enable_parallel_optimizer=True)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
strategy1 = ((4, 1), (1, 1))
|
||||
strategy2 = ((2, 1), (1, 1))
|
||||
micro_batch_interleaved = 2
|
||||
net = PipelineCell(MicroBatchInterleaved(PipelineSplit2(strategy1, strategy2), micro_batch_interleaved), 4)
|
||||
params = net.network.network.cell.block[0].trainable_params()
|
||||
dataset = DatasetLenet(data, label, 3)
|
||||
optimizer = nn.Lamb(params, learning_rate=0.01)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
model.train(2, dataset, dataset_sink_mode=False)
|
||||
|
||||
|
||||
def test_pipeline_split_shared_parameter_with_micro_batch_interleaved_stage1_opt_shard():
|
||||
"""
|
||||
Feature: test PipelineSplitSharedParameter with MicroBatchInterleaved in auto parallel.
|
||||
Description: net with MicroBatchInterleaved in semi auto parallel.
|
||||
Expectation: success.
|
||||
"""
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=4, pipeline_stages=2, enable_parallel_optimizer=True)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
data = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
strategy1 = ((4, 1), (1, 1))
|
||||
strategy2 = ((2, 1), (1, 1))
|
||||
micro_batch_interleaved = 2
|
||||
net = PipelineCell(MicroBatchInterleaved(PipelineSplit2(strategy1, strategy2), micro_batch_interleaved), 4)
|
||||
params = net.network.network.cell.block[1].trainable_params()
|
||||
dataset = DatasetLenet(data, label, 3)
|
||||
optimizer = nn.Lamb(params, learning_rate=0.01)
|
||||
model = Model(net, optimizer=optimizer)
|
||||
model.train(2, dataset, dataset_sink_mode=False)
|
||||
|
|
Loading…
Reference in New Issue