forked from mindspore-Ecosystem/mindspore
!23668 Modify error format of docstring for set_context.
Merge pull request !23668 from zhangyi/code_docs_master
This commit is contained in:
commit
e8f57259d8
|
@ -532,36 +532,61 @@ def set_context(**kwargs):
|
|||
|
||||
Some configurations are device specific, see the below table for details:
|
||||
|
||||
======================= =========================== =========================
|
||||
Function Classification Configuration Parameters Hardware Platform Support
|
||||
======================= =========================== =========================
|
||||
System Configuration device_id CPU/GPU/Ascend
|
||||
device_target CPU/GPU/Ascend
|
||||
max_device_memory GPU
|
||||
variable_memory_max_size Ascend
|
||||
Debug Configuration save_graphs CPU/GPU/Ascend
|
||||
save_graphs_path CPU/GPU/Ascend
|
||||
enable_dump Ascend
|
||||
save_dump_path Ascend
|
||||
enable_profiling Ascend
|
||||
profiling_options Ascend
|
||||
print_file_path Ascend
|
||||
env_config_path CPU/GPU/Ascend
|
||||
precompile_only CPU/GPU/Ascend
|
||||
reserve_class_name_in_scope CPU/GPU/Ascend
|
||||
pynative_synchronize GPU/Ascend
|
||||
Executive Control mode CPU/GPU/Ascend
|
||||
enable_graph_kernel Ascend/GPU
|
||||
graph_kernel_flags Ascend/GPU
|
||||
enable_reduce_precision Ascend
|
||||
auto_tune_mode Ascend
|
||||
check_bprop CPU/GPU/Ascend
|
||||
max_call_depth CPU/GPU/Ascend
|
||||
enable_sparse CPU/GPU/Ascend
|
||||
grad_for_scalar CPU/GPU/Ascend
|
||||
save_compile_cache CPU/GPU/Ascend
|
||||
load_compile_cache CPU/GPU/Ascend
|
||||
======================= =========================== =========================
|
||||
+-------------------------+------------------------------+----------------------------+
|
||||
| Function Classification | Configuration Parameters | Hardware Platform Support|
|
||||
+=========================+==============================+============================+
|
||||
| System Configuration | device_id | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | device_target | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | max_device_memory | GPU |
|
||||
| +------------------------------+----------------------------+
|
||||
| | variable_memory_max_size | Ascend |
|
||||
+-------------------------+------------------------------+----------------------------+
|
||||
| Debug Configuration | save_graphs | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | save_graphs_path | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | enable_dump | Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | save_dump_path | Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | enable_profiling | Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | profiling_options | Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | print_file_path | Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | env_config_path | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | precompile_only | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | reserve_class_name_in_scope | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | pynative_synchronize | GPU/Ascend |
|
||||
+-------------------------+------------------------------+----------------------------+
|
||||
| Executive Control | mode | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | enable_graph_kernel | Ascend/GPU |
|
||||
| +------------------------------+----------------------------+
|
||||
| | graph_kernel_flags | Ascend/GPU |
|
||||
| +------------------------------+----------------------------+
|
||||
| | enable_reduce_precision | Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | auto_tune_mode | Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | check_bprop | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | max_call_depth | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | enable_sparse | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | grad_for_scalar | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | save_compile_cache | CPU/GPU/Ascend |
|
||||
| +------------------------------+----------------------------+
|
||||
| | load_compile_cache | CPU/GPU/Ascend |
|
||||
+-------------------------+------------------------------+----------------------------+
|
||||
|
||||
Args:
|
||||
device_id (int): ID of the target device, the value must be in [0, device_num_per_host-1],
|
||||
|
@ -617,18 +642,15 @@ def set_context(**kwargs):
|
|||
operator name.
|
||||
|
||||
- aic_metrics:
|
||||
the values are as follows:
|
||||
ArithmeticUtilization:
|
||||
percentage statistics of various calculation indicators.
|
||||
PipeUtilization:
|
||||
the time-consuming ratio of calculation unit and handling unit, this item is
|
||||
|
||||
the values are as follows:
|
||||
|
||||
- ArithmeticUtilization: Percentage statistics of various calculation indicators.
|
||||
- PipeUtilization: The time-consuming ratio of calculation unit and handling unit, this item is
|
||||
the default value.
|
||||
Memory:
|
||||
percentage of external memory read and write instructions.
|
||||
MemoryL0:
|
||||
percentage of internal memory read and write instructions.
|
||||
ResourceConflictRatio:
|
||||
proportion of pipline queue instructions.
|
||||
- Memory: Percentage of external memory read and write instructions.
|
||||
- MemoryL0: Percentage of internal memory read and write instructions.
|
||||
- ResourceConflictRatio: Proportion of pipline queue instructions.
|
||||
|
||||
The profiling_options is like '{"output":'/home/data/output', 'training_trace':'on'}'
|
||||
print_file_path (str): The path of saving print data. If this parameter is set, print data is saved to
|
||||
|
@ -638,21 +660,30 @@ def set_context(**kwargs):
|
|||
If it is not set, an error will be reported: prompt to set the upper absolute path.
|
||||
env_config_path (str): Config path for DFX.
|
||||
Through context.set_context(env_config_path="./mindspore_config.json")
|
||||
|
||||
configure RDR:
|
||||
enable: controls whether the RDR is enabled to collects the key data during training and
|
||||
saves key data in the fault scenario. When set to true, the RDR will be turned on.
|
||||
When set to false, the RDR will be turned off.
|
||||
path: sets the path where RDR saves data. The current path must be absolute.
|
||||
|
||||
- enable: controls whether the RDR is enabled to collects the key data during training and
|
||||
saves key data in the fault scenario. When set to true, the RDR will be turned on.
|
||||
When set to false, the RDR will be turned off.
|
||||
- path: sets the path where RDR saves data. The current path must be absolute.
|
||||
|
||||
Memory reuse:
|
||||
mem_Reuse: controls whether the memory reuse function is turned on. When set to True,
|
||||
the memory reuse function is turned on. When set to False, the memory reuse function is turned off.
|
||||
|
||||
- mem_Reuse: controls whether the memory reuse function is turned on. When set to True,
|
||||
- the memory reuse function is turned on. When set to False, the memory reuse function is turned off.
|
||||
|
||||
precompile_only (bool): Whether to only precompile the network. Default: False.
|
||||
If set to True, the network will only be compiled, not executed.
|
||||
reserve_class_name_in_scope (bool) : Whether to save the network class name in the scope. Default: True.
|
||||
Each node has a scope. A scope of a subnode is the name of its parent node. If reserve_class_name_in_scope
|
||||
is set, the class name will be saved after keyword 'net-' in the scope.
|
||||
For example:Default/net-Net1/net-Net2 (reserve_class_name_in_scope=True)
|
||||
Default/net/net (reserve_class_name_in_scope=False)
|
||||
For example:
|
||||
|
||||
Default/net-Net1/net-Net2 (reserve_class_name_in_scope=True)
|
||||
|
||||
Default/net/net (reserve_class_name_in_scope=False)
|
||||
|
||||
pynative_synchronize (bool): Whether to enable synchronous execution of the device in PyNative mode.
|
||||
Default: False. When the value is set to False, the operator is executed asynchronously on the device.
|
||||
When an error occurs in the execution of the operator, the specific error script code location cannot
|
||||
|
@ -673,28 +704,34 @@ def set_context(**kwargs):
|
|||
Optimization options of graph kernel fusion, and the priority is higher when it conflicts
|
||||
with enable_graph_kernel. Experienced user only.
|
||||
For example, context.set_context(graph_kernel_flags=”–opt_level=2 –dump_as_text”). Some general options:
|
||||
opt_level: Set the optimization level.
|
||||
Default: 2. Graph kernel fusion can be enabled equivalently by setting opt_level greater than 0.
|
||||
Available values are:
|
||||
0: Disable graph kernel fusion;
|
||||
1: enable the basic fusion of operators;
|
||||
2: includes all optimizations of level 1,
|
||||
and turns on more optimizations such as CSE, arithmetic simplication and so on;
|
||||
3: includes all optimizations of level 2, and turns on more optimizations such as SitchingFusion,
|
||||
ParallelFusion and so on. Optimizations of this level are radical and unstable in some scenarios.
|
||||
Be caution when using this level.
|
||||
dump_as_text: dump detail info as text files. Default: false.
|
||||
|
||||
- opt_level: Set the optimization level.
|
||||
Default: 2. Graph kernel fusion can be enabled equivalently by setting opt_level greater than 0.
|
||||
Available values are:
|
||||
|
||||
- 0: Disable graph kernel fusion;
|
||||
- 1: enable the basic fusion of operators;
|
||||
- 2: includes all optimizations of level 1,
|
||||
and turns on more optimizations such as CSE, arithmetic simplication and so on;
|
||||
- 3: includes all optimizations of level 2, and turns on more optimizations such as SitchingFusion,
|
||||
ParallelFusion and so on. Optimizations of this level are radical and unstable in some scenarios.
|
||||
Be caution when using this level.
|
||||
|
||||
- dump_as_text: dump detail info as text files. Default: false.
|
||||
|
||||
More options can refer to the implementation code. These options can also be set by environment
|
||||
variable MS_GRAPH_KERNEL_FLAGS, without modifying network source code.
|
||||
For example, export MS_GRAPH_KERNEL_FLAGS=”–opt_level=2 –dump_as_text”.
|
||||
enable_reduce_precision (bool): Whether to enable precision reduction. Default: True.
|
||||
auto_tune_mode (str): The mode of auto tune when op building, get the best tiling performance.
|
||||
Default: NO_TUNE. The value must be in ['RL', 'GA', 'RL,GA'].
|
||||
RL: Reinforcement Learning tune.
|
||||
GA: Genetic Algorithm tune.
|
||||
RL,GA: When both RL and GA optimization are enabled, the tool automatically selects RL or GA based on
|
||||
different types of operators in the network model. The sequence of RL and GA is not differentiated.
|
||||
(Automatic selection).
|
||||
|
||||
- RL: Reinforcement Learning tune.
|
||||
- GA: Genetic Algorithm tune.
|
||||
- RL,GA: When both RL and GA optimization are enabled, the tool automatically selects RL or GA based on
|
||||
different types of operators in the network model. The sequence of RL and GA is not differentiated.
|
||||
(Automatic selection).
|
||||
|
||||
For more information about the enable operator tuning tool settings, please check
|
||||
`Enable the operator optimization tool <https://www.mindspore.cn/docs/programming_guide/en
|
||||
/master/enable_auto_tune.html>`_.
|
||||
|
@ -706,7 +743,7 @@ def set_context(**kwargs):
|
|||
set larger too, otherwise a `core dumped` exception may be raised because of system stack overflow.
|
||||
enable_sparse (bool): Whether to enable sparsity feature. Default: False.
|
||||
For details of sparsity and sparse tensor, please check
|
||||
`sparse tensor <https://www.mindspore.cn/docs/programming_guide/en/master/tensor.html#sparse-tensor>`_.
|
||||
`sparse tensor <https://www.mindspore.cn/docs/programming_guide/en/master/tensor.html#sparse-tensor>`_.
|
||||
grad_for_scalar (bool): Whether to get gradient for scalar. Default: False.
|
||||
When grad_for_scalar is set to True, the function's scalar input can be derived.
|
||||
The default value is False. Because the back-end does not support scaling operations currently,
|
||||
|
|
Loading…
Reference in New Issue