forked from mindspore-Ecosystem/mindspore
!27801 fix tensor api doc
Merge pull request !27801 from huanghui/code_docs-fix-tensor-api-doc
This commit is contained in:
commit
e8b5e0bd4e
|
@ -3,18 +3,18 @@ mindspore.Tensor
|
|||
|
||||
.. py:class:: mindspore.Tensor(input_data=None, dtype=None, shape=None, init=None)
|
||||
|
||||
用来存储数据。 继承自C++中的 `Tensor` 对象。有些函数是用C++实现的,有些函数是用Python实现的。
|
||||
张量,即存储多维数组(n-dimensional array)的数据结构。
|
||||
|
||||
**参数:**
|
||||
|
||||
- **input_data** (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]) - 张量的输入数据。
|
||||
- **dtype** (:class:`mindspore.dtype`) - 输入数据应是在 `mindspore.dtype` 中定义的None、bool或numeric类型。该参数用于定义输出张量的数据类型。如果值为None,则输出张量的数据类型与 `input_data` 的相同。默认值:None。
|
||||
- **shape** (Union[tuple, list, int]) - 用来表示张量的形状,可以是整数列表、整数元组或单一整数。如果 `input_data` 已经被设置,则不需要再设置 `shape` 。默认值:None。
|
||||
- **init** (Initializer) - 用来表示初始化数据的信息。init用于在并行模式下的延迟初始化。一般情况下,不建议在其他条件下使用init接口来初始化参数。如果使用init接口来初始化参数,需要调用 `Tensor.init_data` 接口把 `Tensor` 转换为实际数据。
|
||||
- **input_data** (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]) - 被存储的数据,可以是其它Tensor,也可以是Python基本数据(如int,float,bool等),或是一个NumPy对象。默认值:None。
|
||||
- **dtype** (:class:`mindspore.dtype`) - 用于定义该Tensor的数据类型,必须是 *mindSpore.dtype* 中定义的类型。如果该参数为None,则数据类型与`input_data`一致,默认值:None。
|
||||
- **shape** (Union[tuple, list, int]) - 用于定义该Tensor的形状。如果指定了`input_data`,则无需设置该参数。默认值:None。
|
||||
- **init** (Initializer) - 用于在并行模式中延迟Tensor的数据的初始化,如果指定该参数,则`dtype`和`shape`也必须被指定。不推荐在非自动并行之外的场景下使用该接口。只有当调用`Tensor.init_data`时,才会使用指定的`init`来初始化Tensor数据。默认值:None。
|
||||
|
||||
**返回:**
|
||||
|
||||
Tensor。如果未设置 `dtype` 和 `shape` ,返回与 `input_data` 具有相同数据类型和形状的张量。如果设置了 `dtype` 或 `shape` ,则输出的张量的数据类型或形状与设置的相同。
|
||||
Tensor。
|
||||
|
||||
**样例:**
|
||||
|
||||
|
@ -42,7 +42,7 @@ mindspore.Tensor
|
|||
.. py:method:: T
|
||||
:property:
|
||||
|
||||
返回转置后的张量。
|
||||
返回转置后的Tensor。
|
||||
|
||||
.. py:method:: abs()
|
||||
|
||||
|
|
|
@ -33,28 +33,25 @@ np_types = (np.int8, np.int16, np.int32, np.int64,
|
|||
|
||||
class Tensor(Tensor_):
|
||||
"""
|
||||
Tensor is used for data storage.
|
||||
|
||||
Tensor inherits tensor object in C++.
|
||||
Some functions are implemented in C++ and some functions are implemented in Python.
|
||||
Tensor is a data structure that stores an n-dimensional array.
|
||||
|
||||
Args:
|
||||
input_data (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]): Input data of the tensor.
|
||||
Default: None.
|
||||
dtype (:class:`mindspore.dtype`): Input data should be None, bool or numeric type defined in `mindspore.dtype`.
|
||||
The argument is used to define the data type of the output tensor. If it is None, the data type of the
|
||||
output tensor will be the same as the `input_data`. Default: None.
|
||||
shape (Union[tuple, list, int]): A list of integers, a tuple of integers or an integer as the shape of
|
||||
output. If `input_data` is available, `shape` doesn't need to be set. Default: None.
|
||||
input_data (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]): The data to be stroed. It can be
|
||||
another Tensor, Python number or NumPy ndarray. Default: None.
|
||||
dtype (:class:`mindspore.dtype`): Used to indicate the data type of the output Tensor. The argument should
|
||||
be defined in `mindspore.dtype`. If it is None, the data type of the output Tensor will be the same
|
||||
as the `input_data`. Default: None.
|
||||
shape (Union[tuple, list, int]): Used to indicate the shape of the output Tensor. The argument should be
|
||||
a list of integers, a tuple of integers or an integer. If `input_data` is available,
|
||||
`shape` doesn't need to be set. Default: None.
|
||||
init (Initializer): The information of init data.
|
||||
'init' is used for delayed initialization in parallel mode. Usually, it is not recommended to use
|
||||
'init' interface to initialize parameters in other conditions. If 'init' interface is used to initialize
|
||||
parameters, the `Tensor.init_data` API needs to be called to convert `Tensor` to the actual data.
|
||||
'init' interface to initialize Tensor in the other conditions. If 'init' interface is used to initialize
|
||||
Tensor, the `Tensor.init_data` API needs to be called to convert `Tensor` to the actual data.
|
||||
Default: None.
|
||||
|
||||
Outputs:
|
||||
Tensor. If `dtype` and `shape` are not set, return a tensor with the same dtype and shape as `input_data`.
|
||||
If `dtype` or `shape` is set, the dtype or shape of the output Tensor is consistent with the setting.
|
||||
Tensor.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
|
|
Loading…
Reference in New Issue