fix eval fp16 bug and codex

This commit is contained in:
wandongdong 2020-05-09 20:25:45 +08:00
parent 08d86c483c
commit e7b3ac0a01
3 changed files with 25 additions and 13 deletions

View File

@ -42,6 +42,9 @@ if __name__ == '__main__':
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean')
net = mobilenet_v2(num_classes=config.num_classes) net = mobilenet_v2(num_classes=config.num_classes)
net.to_float(mstype.float16) net.to_float(mstype.float16)
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Dense):
cell.add_flags_recursive(fp32=True)
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size) dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size)
step_size = dataset.get_dataset_size() step_size = dataset.get_dataset_size()

View File

@ -17,6 +17,7 @@ import os
import sys import sys
import json import json
import subprocess import subprocess
import shutil
from argparse import ArgumentParser from argparse import ArgumentParser
def parse_args(): def parse_args():
@ -126,25 +127,33 @@ def main():
# spawn the processes # spawn the processes
processes = [] processes = []
cmds = [] cmds = []
log_files = []
env = os.environ.copy()
env['RANK_SIZE'] = str(args.nproc_per_node)
for rank_id in range(0, args.nproc_per_node): for rank_id in range(0, args.nproc_per_node):
device_id = visible_devices[rank_id] device_id = visible_devices[rank_id]
device_dir = os.path.join(os.getcwd(), 'device{}'.format(rank_id)) device_dir = os.path.join(os.getcwd(), 'device{}'.format(rank_id))
rank_process = 'export RANK_SIZE={} && export RANK_ID={} && export DEVICE_ID={} && '.format(args.nproc_per_node, env['RANK_ID'] = str(rank_id)
rank_id, device_id) env['DEVICE_ID'] = str(device_id)
if args.nproc_per_node > 1: if args.nproc_per_node > 1:
rank_process += 'export MINDSPORE_HCCL_CONFIG_PATH={} && '.format(table_fn) env['MINDSPORE_HCCL_CONFIG_PATH'] = table_fn
rank_process += 'export RANK_TABLE_FILE={} && '.format(table_fn) env['RANK_TABLE_FILE'] = table_fn
rank_process += 'rm -rf {dir} && mkdir {dir} && cd {dir} && python {script} '.format(dir=device_dir, if os.path.exists(device_dir):
script=args.training_script shutil.rmtree(device_dir)
) os.mkdir(device_dir)
rank_process += ' '.join(args.training_script_args) + ' > log{}.log 2>&1 &'.format(rank_id) cmd = [sys.executable, '-u']
process = subprocess.Popen(rank_process, shell=True) cmd.append(args.training_script)
cmd.extend(args.training_script_args)
log_file = open('{dir}/log{id}.log'.format(dir=device_dir, id=rank_id), 'w')
process = subprocess.Popen(cmd, stdout=log_file, env=env)
processes.append(process) processes.append(process)
cmds.append(rank_process) cmds.append(cmd)
for process, cmd in zip(processes, cmds): log_files.append(log_file)
for process, cmd, log_file in zip(processes, cmds, log_files):
process.wait() process.wait()
if process.returncode != 0: if process.returncode != 0:
raise subprocess.CalledProcessError(returncode=process, cmd=cmd) raise subprocess.CalledProcessError(returncode=process, cmd=cmd)
log_file.close()
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -119,7 +119,7 @@ class Monitor(Callback):
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds, print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
per_step_mseconds, per_step_mseconds,
np.mean(self.losses) np.mean(self.losses)
), flush=True) ))
def step_begin(self, run_context): def step_begin(self, run_context):
self.step_time = time.time() self.step_time = time.time()
@ -139,7 +139,7 @@ class Monitor(Callback):
print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format( print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss, cb_params.cur_epoch_num - 1, cb_params.epoch_num, cur_step_in_epoch, cb_params.batch_num, step_loss,
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]), flush=True) np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
if __name__ == '__main__': if __name__ == '__main__':