forked from mindspore-Ecosystem/mindspore
fix opencl context set for fp16
This commit is contained in:
parent
217628a9b9
commit
e6e0da0ebf
|
@ -307,6 +307,7 @@ int LiteSession::Init(Context *context) {
|
|||
#if SUPPORT_GPU
|
||||
if (context_->device_type_ == DT_GPU) {
|
||||
auto opencl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
opencl_runtime->SetFp16Enable(context_->float16_priority);
|
||||
opencl_runtime->Init();
|
||||
MS_LOG(INFO) << "Init OpenCL runtime.";
|
||||
}
|
||||
|
|
|
@ -95,8 +95,9 @@ int SubGraphOpenCLKernel::GenToFormatOp(const std::vector<lite::Tensor *> &in_te
|
|||
|
||||
out_tensors->emplace_back(new_tensor);
|
||||
KernelKey desc{kGPU, kNumberTypeFloat32, schema::PrimitiveType_ToFormat};
|
||||
if (lite::opencl::OpenCLRuntime::GetInstance()->GetFp16Enable()) {
|
||||
if (mem_type == OpenCLMemType::IMG && lite::opencl::OpenCLRuntime::GetInstance()->GetFp16Enable()) {
|
||||
desc.data_type = kNumberTypeFloat16;
|
||||
new_tensor->set_data_type(kNumberTypeFloat16);
|
||||
}
|
||||
OpenCLToFormatParameter *parameter = new (std::nothrow) OpenCLToFormatParameter;
|
||||
MS_ASSERT(parameter);
|
||||
|
@ -112,11 +113,11 @@ int SubGraphOpenCLKernel::GenToFormatOp(const std::vector<lite::Tensor *> &in_te
|
|||
out_parameters->emplace_back(parameter);
|
||||
LiteKernel *in_convert_op = nullptr;
|
||||
if (mem_type == OpenCLMemType::IMG) {
|
||||
in_convert_op =
|
||||
lite::GetOpenCLKernel({in_tensors[i]}, {new_tensor}, reinterpret_cast<OpParameter *>(parameter), nullptr, desc);
|
||||
in_convert_op = lite::GetOpenCLKernel({in_tensors[i]}, {new_tensor}, reinterpret_cast<OpParameter *>(parameter),
|
||||
context_, desc);
|
||||
} else {
|
||||
in_convert_op =
|
||||
lite::GetOpenCLKernel({new_tensor}, {in_tensors[i]}, reinterpret_cast<OpParameter *>(parameter), nullptr, desc);
|
||||
in_convert_op = lite::GetOpenCLKernel({new_tensor}, {in_tensors[i]}, reinterpret_cast<OpParameter *>(parameter),
|
||||
context_, desc);
|
||||
}
|
||||
MS_ASSERT(in_convert_op);
|
||||
if (in_convert_op == nullptr) {
|
||||
|
|
|
@ -34,8 +34,10 @@ class SubGraphOpenCLKernel : public SubGraphKernel {
|
|||
explicit SubGraphOpenCLKernel(const std::vector<lite::Tensor *> inputs, const std::vector<lite::Tensor *> outputs,
|
||||
const std::vector<kernel::LiteKernel *> inKernels,
|
||||
const std::vector<kernel::LiteKernel *> outKernels,
|
||||
const std::vector<kernel::LiteKernel *> nodes)
|
||||
: SubGraphKernel(inputs, outputs, inKernels, outKernels, nodes, nullptr, nullptr) {}
|
||||
const std::vector<kernel::LiteKernel *> nodes,
|
||||
const lite::Context *ctx = nullptr,
|
||||
const mindspore::lite::PrimitiveC *primitive = nullptr)
|
||||
: SubGraphKernel(inputs, outputs, inKernels, outKernels, nodes, ctx, primitive) {}
|
||||
~SubGraphOpenCLKernel() override;
|
||||
|
||||
int Init() override;
|
||||
|
|
|
@ -178,6 +178,12 @@ void Scheduler::ConstructSubgraphs(std::vector<kernel::LiteKernel *> *kernels) {
|
|||
std::vector<kernel::LiteKernel *> subgraph_kernels;
|
||||
size_t sub_cnt{0};
|
||||
for (auto temp_kernels : sub_kernels_list) {
|
||||
std::vector<Tensor *> output_tensor = kernel::LiteKernelUtil::SubgraphOutputTensors(temp_kernels);
|
||||
for (auto tensor : output_tensor) {
|
||||
if (context_->float16_priority && tensor->data_type() == kNumberTypeFloat16) {
|
||||
tensor->set_data_type(kNumberTypeFloat32);
|
||||
}
|
||||
}
|
||||
kernel::KERNEL_ARCH arch = temp_kernels.front()->desc().arch;
|
||||
if (arch == kernel::KERNEL_ARCH::kCPU) {
|
||||
for (auto kernel : temp_kernels) {
|
||||
|
@ -185,12 +191,6 @@ void Scheduler::ConstructSubgraphs(std::vector<kernel::LiteKernel *> *kernels) {
|
|||
tensor->set_allocator(context_->allocator.get());
|
||||
}
|
||||
}
|
||||
std::vector<Tensor *> output_tensor = kernel::LiteKernelUtil::SubgraphOutputTensors(temp_kernels);
|
||||
for (auto tensor : output_tensor) {
|
||||
if (context_->float16_priority && tensor->data_type() == kNumberTypeFloat16) {
|
||||
tensor->set_data_type(kNumberTypeFloat32);
|
||||
}
|
||||
}
|
||||
std::copy(temp_kernels.begin(), temp_kernels.end(), std::back_inserter(subgraph_kernels));
|
||||
} else {
|
||||
auto subgraph_kernel = CreateSubKernel(temp_kernels, arch);
|
||||
|
@ -213,8 +213,8 @@ kernel::LiteKernel *Scheduler::CreateSubKernel(const std::vector<kernel::LiteKer
|
|||
std::vector<Tensor *> output_tensors = kernel::LiteKernelUtil::SubgraphOutputTensors(kernels);
|
||||
std::vector<kernel::LiteKernel *> input_kernels = kernel::LiteKernelUtil::SubgraphInputKernels(kernels);
|
||||
std::vector<kernel::LiteKernel *> output_kernels = kernel::LiteKernelUtil::SubgraphOutputKernels(kernels);
|
||||
sub_kernel =
|
||||
new kernel::SubGraphOpenCLKernel(input_tensors, output_tensors, input_kernels, output_kernels, kernels);
|
||||
sub_kernel = new kernel::SubGraphOpenCLKernel(input_tensors, output_tensors, input_kernels, output_kernels, kernels,
|
||||
context_, nullptr);
|
||||
sub_kernel->Init();
|
||||
} else if (arch == kernel::KERNEL_ARCH::kNPU) {
|
||||
MS_LOG(ERROR) << "NPU kernel is not supported";
|
||||
|
|
Loading…
Reference in New Issue