forked from mindspore-Ecosystem/mindspore
1.fix fp16 conv multi thread bug
2. fix bug of int8 conv per layer param 3. Add return error when set quant param failed
This commit is contained in:
parent
9f635e52c7
commit
e4611ac0ac
|
@ -141,23 +141,23 @@ int ConvolutionBaseCPUKernel::SetIfAsymmetric() {
|
|||
uint8_t asymmetric = 0b0;
|
||||
auto filter_tensor = in_tensors_.at(kWeightIndex);
|
||||
auto filter_ele_num = filter_tensor->ElementsNum();
|
||||
auto filter_data = reinterpret_cast<float *>(filter_tensor->Data());
|
||||
float min_value = FLT_MAX;
|
||||
float max_value = -FLT_MAX;
|
||||
auto filter_data = reinterpret_cast<int8_t *>(filter_tensor->Data());
|
||||
int min_value = INT8_MAX;
|
||||
int max_value = INT8_MIN;
|
||||
for (int i = 0; i < filter_ele_num; ++i) {
|
||||
min_value = min_value < filter_data[i] ? min_value : filter_data[i];
|
||||
max_value = max_value > filter_data[i] ? max_value : filter_data[i];
|
||||
}
|
||||
if (conv_quant_arg_->filter_arg_num_ == kPerTensor) {
|
||||
auto filter_zp = conv_quant_arg_->filter_quant_args_[0].zp_;
|
||||
if (filter_zp == 0 && min_value >= -127 && max_value <= 127) {
|
||||
asymmetric = asymmetric & FILTER_ASYMMETRIC;
|
||||
if (filter_zp != 0 && min_value >= -128 && max_value <= 127) {
|
||||
asymmetric = asymmetric | FILTER_ASYMMETRIC;
|
||||
}
|
||||
} else {
|
||||
auto filter_arg = conv_quant_arg_->filter_quant_args_;
|
||||
for (int i = 0; i < conv_param_->output_channel_; ++i) {
|
||||
if (filter_arg[i].zp_ == 0 && min_value >= -127 && max_value <= 127) {
|
||||
asymmetric = asymmetric & FILTER_ASYMMETRIC;
|
||||
if (filter_arg[i].zp_ != 0 && min_value >= -128 && max_value <= 127) {
|
||||
asymmetric = asymmetric | FILTER_ASYMMETRIC;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -282,6 +282,39 @@ int Convolution3x3FP16CPUKernel::Run() {
|
|||
return RET_ERROR;
|
||||
}
|
||||
|
||||
// get real output
|
||||
// todo
|
||||
int out_w_block = UP_DIV(conv_param_->output_w_, C4NUM);
|
||||
int out_h_block = UP_DIV(conv_param_->output_h_, C4NUM);
|
||||
int oc8 = UP_DIV(conv_param_->output_channel_, C8NUM);
|
||||
bool relu = conv_param_->is_relu_;
|
||||
bool relu6 = conv_param_->is_relu6_;
|
||||
for (int batch = 0; batch < conv_param_->output_batch_; batch++) {
|
||||
int tmp_out_batch_offset =
|
||||
batch * oc8 * C8NUM * out_w_block * out_h_block * conv_param_->output_unit_ * conv_param_->output_unit_;
|
||||
int ro_batch_size = batch * conv_param_->output_channel_ * conv_param_->output_h_ * conv_param_->output_w_;
|
||||
const float16_t *batch_tmp_out = tmp_out_ + tmp_out_batch_offset;
|
||||
float16_t *batch_out = fp16_out_ + ro_batch_size;
|
||||
for (int h = 0; h < conv_param_->output_h_; h++) {
|
||||
for (int w = 0; w < conv_param_->output_w_; w++) {
|
||||
for (int c = 0; c < conv_param_->output_channel_; c++) {
|
||||
int oc8_block = c / C8NUM;
|
||||
int oc8_res = c % C8NUM;
|
||||
int src_offset = oc8_block * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM +
|
||||
C8NUM * (h * out_w_block * conv_param_->output_unit_ + w) + oc8_res;
|
||||
int dst_offset = (h * conv_param_->output_w_ + w) * conv_param_->output_channel_ + c;
|
||||
(batch_out + dst_offset)[0] = (batch_tmp_out + src_offset)[0];
|
||||
if (relu) {
|
||||
(batch_out + dst_offset)[0] = (batch_out + dst_offset)[0] < 0 ? 0 : (batch_out + dst_offset)[0];
|
||||
} else if (relu6) {
|
||||
(batch_out + dst_offset)[0] = (batch_out + dst_offset)[0] < 0 ? 0 : (batch_out + dst_offset)[0];
|
||||
(batch_out + dst_offset)[0] = (batch_out + dst_offset)[0] > 6 ? 6 : (batch_out + dst_offset)[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// cast fp16 out to fp32 data
|
||||
auto out_tensor = out_tensors_.at(kOutputIndex);
|
||||
auto out_ele_num = out_tensor->ElementsNum();
|
||||
|
|
|
@ -263,6 +263,13 @@ int ConvolutionSWFP16CPUKernel::Run() {
|
|||
auto out_tensor = out_tensors_.at(kOutputIndex);
|
||||
auto out_ele_num = out_tensor->ElementsNum();
|
||||
auto output_addr = reinterpret_cast<float *>(out_tensor->Data());
|
||||
// output nhwc4
|
||||
int oc4_res = conv_param_->output_channel_ % C4NUM;
|
||||
if (oc4_res != 0) {
|
||||
PackNHWC4ToNHWCFp16(reinterpret_cast<const void *>(tmp_output_block_), reinterpret_cast<void *>(fp16_out_),
|
||||
conv_param_->output_batch_, conv_param_->output_h_ * conv_param_->output_w_,
|
||||
conv_param_->output_channel_);
|
||||
}
|
||||
Float16ToFloat32(fp16_out_, output_addr, out_ele_num);
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -206,6 +206,14 @@ int ConvolutionSWCPUKernel::Run() {
|
|||
MS_LOG(ERROR) << "conv error error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
// output nhwc4
|
||||
auto out_tensor = out_tensors_.front();
|
||||
auto out_data = reinterpret_cast<float *>(out_tensor->Data());
|
||||
int oc4_res = conv_param_->output_channel_ % C4NUM;
|
||||
if (oc4_res != 0) {
|
||||
PackNHWC4ToNHWCFp32(tmp_output_block_, out_data, conv_param_->output_batch_,
|
||||
conv_param_->output_h_ * conv_param_->output_w_, conv_param_->output_channel_);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -170,7 +170,11 @@ int Convolution3x3Int8CPUKernel::Init() {
|
|||
MS_LOG(ERROR) << "ConvolutionBase init failed.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
SetQuantParam();
|
||||
ret = SetQuantParam();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Set quant param failed.";
|
||||
return ret;
|
||||
}
|
||||
ret = InitWeightBias();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Init weight bias failed.";
|
||||
|
@ -249,6 +253,11 @@ int Convolution3x3Int8CPUKernel::Run() {
|
|||
MS_LOG(ERROR) << "conv3x3 int8 error error_code[" << error_code << "]";
|
||||
return RET_ERROR;
|
||||
}
|
||||
// get real output
|
||||
auto out_tensor = out_tensors_.front();
|
||||
auto out_data = reinterpret_cast<int8_t *>(out_tensor->Data());
|
||||
PackNC4HW4ToNHWCInt8(tmp_out_, out_data, conv_param_->output_batch_, conv_param_->output_h_ * conv_param_->output_w_,
|
||||
conv_param_->output_channel_);
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -111,10 +111,14 @@ int ConvolutionDepthwiseInt8CPUKernel::Init() {
|
|||
InitSlidingParamConvDw(sliding, conv_param_, C4NUM);
|
||||
|
||||
// init quant param
|
||||
ConvolutionBaseCPUKernel::SetQuantParam();
|
||||
auto ret = ConvolutionBaseCPUKernel::SetQuantParam();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Set quant param failed.";
|
||||
return ret;
|
||||
}
|
||||
|
||||
// init weight and bias
|
||||
auto ret = InitWeightBias();
|
||||
ret = InitWeightBias();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Depthwise int8 InitWeightBias error!";
|
||||
return ret;
|
||||
|
|
|
@ -305,7 +305,11 @@ int ConvolutionInt8CPUKernel::Init() {
|
|||
// config input output
|
||||
ConfigInputOutput();
|
||||
CheckSupportOptimize();
|
||||
SetQuantParam();
|
||||
ret = SetQuantParam();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Set quant param failed.";
|
||||
return ret;
|
||||
}
|
||||
// init for opt
|
||||
if (support_optimize_) {
|
||||
ret = InitOpt();
|
||||
|
|
|
@ -148,10 +148,14 @@ int DeconvolutionDepthwiseInt8CPUKernel::Init() {
|
|||
ConvolutionBaseCPUKernel::Init();
|
||||
|
||||
// init quant param
|
||||
ConvolutionBaseCPUKernel::SetQuantParam();
|
||||
auto ret = ConvolutionBaseCPUKernel::SetQuantParam();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Set quant param failed.";
|
||||
return ret;
|
||||
}
|
||||
|
||||
// init weight and bias
|
||||
auto ret = InitWeightBias();
|
||||
ret = InitWeightBias();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Deconv Depthwise int8 InitWeightBias error!";
|
||||
return ret;
|
||||
|
|
|
@ -307,11 +307,6 @@ void ConvSWFp16(const float16_t *input_data, const float16_t *packed_weight, con
|
|||
src += slidingWindow_param->in_step_;
|
||||
dst += slidingWindow_param->out_step_;
|
||||
} // batch loop
|
||||
// output nhwc4
|
||||
if (oc4_res != 0) {
|
||||
PackNHWC4ToNHWCFp16((const void *)tmp_out_block, (void *)output_data, conv_param->output_batch_,
|
||||
conv_param->output_h_ * conv_param->output_w_, conv_param->output_channel_);
|
||||
}
|
||||
}
|
||||
|
||||
// fp16 convolution common (im2col+gemm)
|
||||
|
@ -381,11 +376,6 @@ void Conv3x3Fp16(float16_t *input_data, float16_t *transed_weight, const float16
|
|||
int ic4 = UP_DIV(conv_param->input_channel_, C4NUM);
|
||||
int oc8 = UP_DIV(conv_param->output_channel_, C8NUM);
|
||||
|
||||
int output_batch = conv_param->output_batch_;
|
||||
int output_channel = conv_param->output_channel_;
|
||||
int output_w = conv_param->output_w_;
|
||||
int output_h = conv_param->output_h_;
|
||||
|
||||
int out_w_block = UP_DIV(conv_param->output_w_, C4NUM);
|
||||
int out_h_block = UP_DIV(conv_param->output_h_, C4NUM);
|
||||
int output_count = out_w_block * out_h_block;
|
||||
|
@ -414,33 +404,4 @@ void Conv3x3Fp16(float16_t *input_data, float16_t *transed_weight, const float16
|
|||
bias_data, start_index, real_cal_num, out_w_block, conv_param);
|
||||
}
|
||||
}
|
||||
|
||||
// get real output
|
||||
// todo
|
||||
bool relu = conv_param->is_relu_;
|
||||
bool relu6 = conv_param->is_relu6_;
|
||||
for (int batch = 0; batch < output_batch; batch++) {
|
||||
int tmp_out_batch_offset = batch * oc8 * C8NUM * out_w_block * out_h_block * output_unit * output_unit;
|
||||
int ro_batch_size = batch * output_channel * output_h * output_w;
|
||||
const float16_t *batch_tmp_out = tmp_out + tmp_out_batch_offset;
|
||||
float16_t *batch_out = output_data + ro_batch_size;
|
||||
for (int h = 0; h < output_h; h++) {
|
||||
for (int w = 0; w < output_w; w++) {
|
||||
for (int c = 0; c < output_channel; c++) {
|
||||
int oc8_block = c / C8NUM;
|
||||
int oc8_res = c % C8NUM;
|
||||
int src_offset = oc8_block * C8NUM * out_w_block * out_h_block * C4NUM * C4NUM +
|
||||
C8NUM * (h * out_w_block * output_unit + w) + oc8_res;
|
||||
int dst_offset = (h * output_w + w) * output_channel + c;
|
||||
(batch_out + dst_offset)[0] = (batch_tmp_out + src_offset)[0];
|
||||
if (relu) {
|
||||
(batch_out + dst_offset)[0] = (batch_out + dst_offset)[0] < 0 ? 0 : (batch_out + dst_offset)[0];
|
||||
} else if (relu6) {
|
||||
(batch_out + dst_offset)[0] = (batch_out + dst_offset)[0] < 0 ? 0 : (batch_out + dst_offset)[0];
|
||||
(batch_out + dst_offset)[0] = (batch_out + dst_offset)[0] > 6 ? 6 : (batch_out + dst_offset)[0];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -182,11 +182,6 @@ void ConvSWFp32(const float *input_data, const float *packed_weight, const float
|
|||
src += slidingWindow_param->in_step_;
|
||||
dst += slidingWindow_param->out_step_;
|
||||
} // batch loop
|
||||
// output nhwc4
|
||||
if (oc4_res != 0) {
|
||||
PackNHWC4ToNHWCFp32(tmp_out_block, output_data, conv_param->output_batch_,
|
||||
conv_param->output_h_ * conv_param->output_w_, conv_param->output_channel_);
|
||||
}
|
||||
}
|
||||
|
||||
// fp32 conv common
|
||||
|
|
|
@ -264,7 +264,7 @@ void ConvInt8(int8_t *input_data, int8_t *packed_input, int8_t *packed_weight, c
|
|||
int packed_input_size = output_tile_count * tile_n * unit_size;
|
||||
|
||||
for (int b = 0; b < in_batch; b++) {
|
||||
int in_batch_offset = b * in_channel * in_h * in_w;
|
||||
int in_batch_offset = b * ic4 * C4NUM * in_h * in_w;
|
||||
int out_batch_offset = b * out_channel * out_h * out_w;
|
||||
int gemm_in_batch_offset = b * packed_input_size;
|
||||
for (int thread_id = task_id; thread_id < output_tile_count; thread_id += thread_count) {
|
||||
|
@ -319,7 +319,7 @@ void ConvInt8Opt(int8_t *input_data, int8_t *packed_input, int8_t *packed_weight
|
|||
int packed_input_size = output_tile_count * tile_n * unit_size;
|
||||
|
||||
for (int b = 0; b < in_batch; b++) {
|
||||
int in_batch_offset = b * in_channel * in_h * in_w;
|
||||
int in_batch_offset = b * ic4 * C4NUM * in_h * in_w;
|
||||
int out_batch_offset = b * out_channel * out_h * out_w;
|
||||
int gemm_in_batch_offset = b * packed_input_size;
|
||||
for (int thread_id = task_id; thread_id < output_tile_count; thread_id += thread_count) {
|
||||
|
@ -358,10 +358,7 @@ void Conv3x3Int8(int16_t *input_data, int16_t *transed_weight, const int32_t *bi
|
|||
int task_id, ConvParameter *conv_param) {
|
||||
int thread_count = conv_param->thread_num_;
|
||||
int ic8 = UP_DIV(conv_param->input_channel_, C8NUM);
|
||||
int output_batch = conv_param->output_batch_;
|
||||
int output_channel = conv_param->output_channel_;
|
||||
int output_w = conv_param->output_w_;
|
||||
int output_h = conv_param->output_h_;
|
||||
int out_w_block = UP_DIV(conv_param->output_w_, OUPUT_UNIT);
|
||||
int out_h_block = UP_DIV(conv_param->output_h_, OUPUT_UNIT);
|
||||
int output_count = out_w_block * out_h_block;
|
||||
|
@ -373,22 +370,21 @@ void Conv3x3Int8(int16_t *input_data, int16_t *transed_weight, const int32_t *bi
|
|||
|
||||
int input_batch = conv_param->input_batch_;
|
||||
for (int batch = 0; batch < input_batch; batch++) {
|
||||
int in_batch_offset = batch * ic8 * C8NUM * conv_param->input_h_ * conv_param->input_w_;
|
||||
int tmp_out_batch_offset = batch * oc4 * C4NUM * conv_param->output_w_ * conv_param->output_h_;
|
||||
for (int thread_id = task_id; thread_id < output_tile_count; thread_id += thread_count) {
|
||||
int start_index = thread_id * TILE_NUM;
|
||||
int real_cal_num = (output_count - start_index) < TILE_NUM ? (output_count - start_index) : TILE_NUM;
|
||||
|
||||
Conv3x3Uint8InputTransform(input_data, tile_buffer + task_id * tile_buffer_offset,
|
||||
Conv3x3Uint8InputTransform(input_data + in_batch_offset, tile_buffer + task_id * tile_buffer_offset,
|
||||
block_unit_buffer + task_id * block_unit_buffer_offset, start_index, real_cal_num,
|
||||
out_w_block, conv_param);
|
||||
|
||||
Conv3x3Uint8Gemm(tmp_dst_buffer + task_id * tmp_dst_buffer_offset, tile_buffer + task_id * tile_buffer_offset,
|
||||
transed_weight, output_channel, ic8, real_cal_num);
|
||||
|
||||
Conv3x3Uint8OutputTransform(tmp_dst_buffer + task_id * tmp_dst_buffer_offset, tmp_out, bias_data, start_index,
|
||||
real_cal_num, out_w_block, conv_param);
|
||||
Conv3x3Uint8OutputTransform(tmp_dst_buffer + task_id * tmp_dst_buffer_offset, tmp_out + tmp_out_batch_offset,
|
||||
bias_data, start_index, real_cal_num, out_w_block, conv_param);
|
||||
}
|
||||
}
|
||||
|
||||
// get real output
|
||||
PackNC4HW4ToNHWCInt8(tmp_out, output_data, output_batch, output_h * output_w, output_channel);
|
||||
}
|
||||
|
|
|
@ -417,6 +417,12 @@ void PackWeightToC8Int8(const int8_t *origin_weight_data, int16_t *packed_weight
|
|||
int src_kernel_offset = k * input_channel;
|
||||
int dst_kernel_offset = k * C8NUM;
|
||||
for (int o = 0; o < output_channel; o++) {
|
||||
int32_t zp;
|
||||
if (conv_param->conv_quant_arg_.filter_arg_num_ == 1) {
|
||||
zp = filter_zp[0].zp_;
|
||||
} else {
|
||||
zp = filter_zp[o].zp_;
|
||||
}
|
||||
int src_oc_offset = src_kernel_offset + o * kernel_plane * input_channel;
|
||||
int dst_oc_offset = dst_kernel_offset + o * ic8 * kernel_plane * C8NUM;
|
||||
for (int i = 0; i < input_channel; i++) {
|
||||
|
@ -424,7 +430,7 @@ void PackWeightToC8Int8(const int8_t *origin_weight_data, int16_t *packed_weight
|
|||
int c8_block_rem = i % C8NUM;
|
||||
int src_ic_offset = src_oc_offset + i;
|
||||
int dst_ic_offset = dst_oc_offset + c8_block_num * kernel_plane * C8NUM + c8_block_rem;
|
||||
(packed_weight_data + dst_ic_offset)[0] = (int16_t)((origin_weight_data + src_ic_offset)[0] - filter_zp[o].zp_);
|
||||
(packed_weight_data + dst_ic_offset)[0] = (int16_t)((origin_weight_data + src_ic_offset)[0] - zp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue