forked from mindspore-Ecosystem/mindspore
commit
e1abd47b7b
|
@ -59,7 +59,7 @@ class ExponentialDecayLR(LearningRateSchedule):
|
||||||
For the i-th step, the formula of computing decayed_learning_rate[i] is:
|
For the i-th step, the formula of computing decayed_learning_rate[i] is:
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
decayed\_learning\_rate[i] = learning\_rate * decay\_rate^{p}}
|
decayed\_learning\_rate[i] = learning\_rate * decay\_rate^{p}
|
||||||
|
|
||||||
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
|
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
|
||||||
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
|
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
|
||||||
|
@ -158,7 +158,7 @@ class InverseDecayLR(LearningRateSchedule):
|
||||||
For the i-th step, the formula of computing decayed_learning_rate[i] is:
|
For the i-th step, the formula of computing decayed_learning_rate[i] is:
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
decayed\_learning\_rate[i] = learning\_rate / (1 + decay\_rate * p}
|
decayed\_learning\_rate[i] = learning\_rate / (1 + decay\_rate * p)
|
||||||
|
|
||||||
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
|
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
|
||||||
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
|
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
|
||||||
|
@ -166,7 +166,7 @@ class InverseDecayLR(LearningRateSchedule):
|
||||||
Args:
|
Args:
|
||||||
learning_rate (float): The initial value of learning rate.
|
learning_rate (float): The initial value of learning rate.
|
||||||
decay_rate (float): The decay rate.
|
decay_rate (float): The decay rate.
|
||||||
decay_epoch (int): A value used to calculate decayed learning rate.
|
decay_steps (int): A value used to calculate decayed learning rate.
|
||||||
is_stair (bool): If true, learning rate decay once every `decay_steps` times. Default: False.
|
is_stair (bool): If true, learning rate decay once every `decay_steps` times. Default: False.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
|
@ -207,9 +207,8 @@ class CosineDecayLR(LearningRateSchedule):
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
decayed\_learning\_rate[i] = min\_learning\_rate + 0.5 * (max\_learning\_rate - min\_learning\_rate) *
|
decayed\_learning\_rate[i] = min\_learning\_rate + 0.5 * (max\_learning\_rate - min\_learning\_rate) *
|
||||||
(1 + cos(\frac{current\_epoch}{decay\_epoch}\pi))
|
(1 + cos(\frac{current\_step}{decay\_steps}\pi))
|
||||||
|
|
||||||
Where :math:`current\_epoch=floor(\frac{i}{step\_per\_epoch})`.
|
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
min_lr (float): The minimum value of learning rate.
|
min_lr (float): The minimum value of learning rate.
|
||||||
|
@ -262,11 +261,11 @@ class PolynomialDecayLR(LearningRateSchedule):
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
decayed\_learning\_rate[i] = (learning\_rate - end\_learning\_rate) *
|
decayed\_learning\_rate[i] = (learning\_rate - end\_learning\_rate) *
|
||||||
(1 - tmp\_step / tmp\_decay\_step)^{power} + end\_learning\_rate
|
(1 - tmp\_step / tmp\_decay\_steps)^{power} + end\_learning\_rate
|
||||||
|
|
||||||
Where :math:`tmp\_step=min(global\_step, decay\_step).
|
Where :math:`tmp\_step=min(current\_step, decay\_steps).
|
||||||
If `update_decay_steps` is true, update the value of `tmp_decay_step` every `decay_steps`. The formula
|
If `update_decay_steps` is true, update the value of `tmp_decay_step` every `decay_steps`. The formula
|
||||||
is :math:`tmp\_decay\_step = decay\_step * ceil(global\_step / decay\_steps)`
|
is :math:`tmp\_decay\_steps = decay\_steps * ceil(current\_step / decay\_steps)`
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
learning_rate (float): The initial value of learning rate.
|
learning_rate (float): The initial value of learning rate.
|
||||||
|
@ -335,7 +334,7 @@ class WarmUpLR(LearningRateSchedule):
|
||||||
.. math::
|
.. math::
|
||||||
warmup\_learning\_rate[i] = learning\_rate * tmp\_step / warmup\_steps
|
warmup\_learning\_rate[i] = learning\_rate * tmp\_step / warmup\_steps
|
||||||
|
|
||||||
Where :math:`tmp\_step=min(global\_step, warmup\_steps).
|
Where :math:`tmp\_step=min(current\_step, warmup\_steps)`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
learning_rate (float): The initial value of learning rate.
|
learning_rate (float): The initial value of learning rate.
|
||||||
|
|
Loading…
Reference in New Issue