!5717 Modelzoo network seed interface update.

Merge pull request !5717 from linqingke/fasterrcnn
This commit is contained in:
mindspore-ci-bot 2020-09-04 14:14:40 +08:00 committed by Gitee
commit e17f3b8dd3
47 changed files with 105 additions and 162 deletions

View File

@ -30,7 +30,9 @@ from mindspore import Tensor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.common import set_seed
set_seed(1)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore AlexNet Example')

View File

@ -21,11 +21,14 @@ from mindspore import Model
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor
from mindspore.common import set_seed
from src.md_dataset import create_dataset
from src.losses import OhemLoss
from src.deeplabv3 import deeplabv3_resnet50
from src.config import config
set_seed(1)
parser = argparse.ArgumentParser(description="Deeplabv3 training")
parser.add_argument("--distribute", type=str, default="false", help="Run distribute, default is false.")
parser.add_argument('--data_url', required=True, default=None, help='Train data url')

View File

@ -87,7 +87,9 @@ Dataset used: [COCO2017](<http://images.cocodataset.org/>)
After installing MindSpore via the official website, you can start training and evaluation as follows:
Note: 1.the first run will generate the mindeocrd file, which will take a long time. 2. pretrained model is a resnet50 checkpoint that trained over ImageNet2012. 3. VALIDATION_JSON_FILE is label file. CHECKPOINT_PATH is a checkpoint file after trained.
Note: 1.the first run will generate the mindeocrd file, which will take a long time.
2.pretrained model is a resnet50 checkpoint that trained over ImageNet2012.
3.VALIDATION_JSON_FILE is label file. CHECKPOINT_PATH is a checkpoint file after trained.
```
# standalone training
@ -106,7 +108,7 @@ sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH]
```shell
.
└─FasterRcnn
└─faster_rcnn
├─README.md // descriptions about fasterrcnn
├─scripts
├─run_standalone_train_ascend.sh // shell script for standalone on ascend
@ -148,6 +150,7 @@ sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL]
> Rank_table.json which is specified by RANK_TABLE_FILE is needed when you are running a distribute task. You can generate it by using the [hccl_tools](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools).
> As for PRETRAINED_MODELit should be a ResNet50 checkpoint that trained over ImageNet2012. Ready-made pretrained_models are not available now. Stay tuned.
> The original dataset path needs to be in the config.py,you can select "coco_root" or "image_dir".
### Result
@ -205,10 +208,10 @@ Eval result will be stored in the example path, whose folder name is "eval". Und
| -------------------------- | ----------------------------------------------------------- |
| Model Version | V1 |
| Resource | Ascend 910 CPU 2.60GHz56coresMemory314G |
| uploaded Date | 06/01/2020 (month/day/year) |
| MindSpore Version | 0.3.0-alpha |
| uploaded Date | 08/31/2020 (month/day/year) |
| MindSpore Version | 0.7.0-beta |
| Dataset | COCO2017 |
| Training Parameters | epoch=12, batch_size = 2 |
| Training Parameters | epoch=12, batch_size=2 |
| Optimizer | SGD |
| Loss Function | Softmax Cross Entropy ,Sigmoid Cross Entropy,SmoothL1Loss |
| Speed | 1pc: 190 ms/step; 8pcs: 200 ms/step |
@ -223,12 +226,12 @@ Eval result will be stored in the example path, whose folder name is "eval". Und
| ------------------- | --------------------------- |
| Model Version | V1 |
| Resource | Ascend 910 |
| Uploaded Date | 06/01/2020 (month/day/year) |
| MindSpore Version | 0.3.0-alpha |
| Uploaded Date | 08/31/2020 (month/day/year) |
| MindSpore Version | 0.7.0-beta |
| Dataset | COCO2017 |
| batch_size | 2 |
| outputs | mAP |
| Accuracy | IoU=0.50: 58.6% |
| Accuracy | IoU=0.50: 57.6% |
| Model for inference | 250M (.ckpt file) |
# [ModelZoo Homepage](#contents)

View File

@ -17,21 +17,18 @@
import os
import argparse
import time
import random
import numpy as np
from pycocotools.coco import COCO
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset.engine as de
from mindspore.common import set_seed
from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50
from src.config import config
from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset
from src.util import coco_eval, bbox2result_1image, results2json
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
parser = argparse.ArgumentParser(description="FasterRcnn evaluation")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")

View File

@ -19,8 +19,6 @@ import os
import time
import argparse
import ast
import random
import numpy as np
import mindspore.common.dtype as mstype
from mindspore import context, Tensor
@ -30,7 +28,7 @@ from mindspore.train import Model
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn import SGD
import mindspore.dataset.engine as de
from mindspore.common import set_seed
from src.FasterRcnn.faster_rcnn_r50 import Faster_Rcnn_Resnet50
from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet
@ -38,9 +36,7 @@ from src.config import config
from src.dataset import data_to_mindrecord_byte_image, create_fasterrcnn_dataset
from src.lr_schedule import dynamic_lr
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
parser = argparse.ArgumentParser(description="FasterRcnn training")
parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: false.")
@ -78,18 +74,24 @@ if __name__ == '__main__':
os.makedirs(mindrecord_dir)
if args_opt.dataset == "coco":
if os.path.isdir(config.coco_root):
if not os.path.exists(config.coco_root):
print("Please make sure config:coco_root is valid.")
raise ValueError(config.coco_root)
print("Create Mindrecord. It may take some time.")
data_to_mindrecord_byte_image("coco", True, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("coco_root not exits.")
else:
if os.path.isdir(config.IMAGE_DIR) and os.path.exists(config.ANNO_PATH):
if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
if not os.path.exists(config.image_dir):
print("Please make sure config:image_dir is valid.")
raise ValueError(config.image_dir)
print("Create Mindrecord. It may take some time.")
data_to_mindrecord_byte_image("other", True, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("IMAGE_DIR or ANNO_PATH not exits.")
print("image_dir or anno_path not exits.")
while not os.path.exists(mindrecord_file + ".db"):
time.sleep(5)

View File

@ -23,11 +23,14 @@ from mindspore import context
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.config import cifar_cfg as cfg
from src.dataset import create_dataset
from src.googlenet import GoogleNet
set_seed(1)
parser = argparse.ArgumentParser(description='googlenet')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
args_opt = parser.parse_args()

View File

@ -18,7 +18,6 @@ python train.py
"""
import argparse
import os
import random
import numpy as np
@ -31,13 +30,13 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMoni
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.config import cifar_cfg as cfg
from src.dataset import create_dataset
from src.googlenet import GoogleNet
random.seed(1)
np.random.seed(1)
set_seed(1)
def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None):
"""Set learning rate."""

View File

@ -15,8 +15,6 @@
"""train_imagenet."""
import argparse
import os
import random
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
@ -27,9 +25,9 @@ from mindspore.nn.optim.rmsprop import RMSProp
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore import dataset as de
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.common.initializer import XavierUniform, initializer
from mindspore.common import set_seed
from src.config import config_gpu, config_ascend
from src.dataset import create_dataset
@ -37,9 +35,7 @@ from src.inception_v3 import InceptionV3
from src.lr_generator import get_lr
from src.loss import CrossEntropy
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
if __name__ == '__main__':
@ -94,7 +90,6 @@ if __name__ == '__main__':
if args_opt.platform == "Ascend":
for param in net.trainable_params():
if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
np.random.seed(seed=1)
param.set_parameter_data(initializer(XavierUniform(), param.data.shape, param.data.dtype))
group_params = [{'params': decayed_params, 'weight_decay': cfg.weight_decay},
{'params': no_decayed_params},

View File

@ -29,7 +29,9 @@ from mindspore import context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.common import set_seed
set_seed(1)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore Lenet Example')

View File

@ -28,11 +28,14 @@ from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.train.quant import quant
from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
from mindspore.common import set_seed
from src.dataset import create_dataset
from src.config import mnist_cfg as cfg
from src.lenet_fusion import LeNet5 as LeNet5Fusion
from src.loss_monitor import LossMonitor
set_seed(1)
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser.add_argument('--device_target', type=str, default="Ascend",
choices=['Ascend', 'GPU'],

View File

@ -17,21 +17,18 @@
import os
import argparse
import time
import random
import numpy as np
from pycocotools.coco import COCO
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset.engine as de
from mindspore.common import set_seed
from src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50
from src.config import config
from src.dataset import data_to_mindrecord_byte_image, create_maskrcnn_dataset
from src.util import coco_eval, bbox2result_1image, results2json, get_seg_masks
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
parser = argparse.ArgumentParser(description="MaskRcnn evaluation")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")

View File

@ -17,9 +17,7 @@
import os
import argparse
import random
import ast
import numpy as np
import mindspore.common.dtype as mstype
from mindspore import context, Tensor
@ -29,7 +27,7 @@ from mindspore.train import Model
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn import SGD
import mindspore.dataset.engine as de
from mindspore.common import set_seed
from src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50
from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet
@ -37,9 +35,7 @@ from src.config import config
from src.dataset import data_to_mindrecord_byte_image, create_maskrcnn_dataset
from src.lr_schedule import dynamic_lr
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
parser = argparse.ArgumentParser(description="MaskRcnn training")
parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False, help="If set it true, only create "

View File

@ -13,16 +13,12 @@
# limitations under the License.
# ============================================================================
import random
import numpy as np
from mindspore import context
from mindspore import nn
from mindspore.common import dtype as mstype
from mindspore.train.model import ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.communication.management import get_rank, init
from mindspore.dataset import engine as de
from src.models import Monitor
@ -84,10 +80,3 @@ def config_ckpoint(config, lr, step_size):
ckpt_cb = ModelCheckpoint(prefix="mobilenetV2", directory=ckpt_save_dir, config=config_ck)
cb += [ckpt_cb]
return cb
def set_random_seed(seed=1):
random.seed(seed)
np.random.seed(seed)
de.config.set_seed(seed)

View File

@ -27,16 +27,17 @@ from mindspore.common import dtype as mstype
from mindspore.train.model import Model
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import _exec_save_checkpoint
from mindspore.common import set_seed
from src.dataset import create_dataset, extract_features
from src.lr_generator import get_lr
from src.config import set_config
from src.args import train_parse_args
from src.utils import set_random_seed, context_device_init, switch_precision, config_ckpoint
from src.utils import context_device_init, switch_precision, config_ckpoint
from src.models import CrossEntropyWithLabelSmooth, define_net
set_random_seed(1)
set_seed(1)
if __name__ == '__main__':
args_opt = train_parse_args()

View File

@ -16,8 +16,6 @@
import os
import argparse
import random
import numpy as np
from mindspore import context
from mindspore import Tensor
@ -30,7 +28,7 @@ from mindspore.train.serialization import load_checkpoint
from mindspore.communication.management import init, get_group_size, get_rank
from mindspore.train.quant import quant
from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
import mindspore.dataset.engine as de
from mindspore.common import set_seed
from src.dataset import create_dataset
from src.lr_generator import get_lr
@ -38,9 +36,7 @@ from src.utils import Monitor, CrossEntropyWithLabelSmooth
from src.config import config_ascend_quant, config_gpu_quant
from src.mobilenetV2 import mobilenetV2
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')

View File

@ -16,7 +16,6 @@
import time
import argparse
import random
import numpy as np
from mindspore import context
@ -33,7 +32,7 @@ from mindspore.context import ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset.engine as de
from mindspore.common import set_seed
from mindspore.communication.management import init, get_group_size, get_rank
from src.dataset import create_dataset
@ -41,9 +40,7 @@ from src.lr_generator import get_lr
from src.config import config_gpu
from src.mobilenetV3 import mobilenet_v3_large
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')

View File

@ -15,8 +15,6 @@
"""train imagenet."""
import argparse
import os
import random
import numpy as np
from mindspore import Tensor
from mindspore import context
@ -26,7 +24,7 @@ from mindspore.nn.optim.rmsprop import RMSProp
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore import dataset as de
from mindspore.common import set_seed
from src.config import nasnet_a_mobile_config_gpu as cfg
from src.dataset import create_dataset
@ -34,9 +32,7 @@ from src.nasnet_a_mobile import NASNetAMobileWithLoss, NASNetAMobileTrainOneStep
from src.lr_generator import get_lr
random.seed(cfg.random_seed)
np.random.seed(cfg.random_seed)
de.config.set_seed(cfg.random_seed)
set_seed(cfg.random_seed)
if __name__ == '__main__':

View File

@ -14,11 +14,9 @@
# ============================================================================
"""train resnet."""
import os
import random
import argparse
import numpy as np
from mindspore import context
from mindspore import dataset as de
from mindspore.common import set_seed
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
@ -33,9 +31,7 @@ parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
args_opt = parser.parse_args()
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
if args_opt.net == "resnet50":
from src.resnet import resnet50 as resnet

View File

@ -14,13 +14,10 @@
# ============================================================================
"""train resnet."""
import os
import random
import argparse
import ast
import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore import dataset as de
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.model import Model
@ -30,6 +27,7 @@ from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.common import set_seed
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from src.lr_generator import get_lr, warmup_cosine_annealing_lr
@ -47,9 +45,7 @@ parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained ch
parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train')
args_opt = parser.parse_args()
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
if args_opt.net == "resnet50":
from src.resnet import resnet50 as resnet

View File

@ -31,6 +31,7 @@ from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
from mindspore.communication.management import init
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
from mindspore.common import set_seed
#from models.resnet_quant import resnet50_quant #auto construct quantative network of resnet50
from models.resnet_quant_manual import resnet50_quant #manually construct quantative network of resnet50
@ -39,6 +40,8 @@ from src.lr_generator import get_lr
from src.config import config_quant
from src.crossentropy import CrossEntropy
set_seed(1)
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
parser.add_argument('--device_num', type=int, default=1, help='Device num.')

View File

@ -14,11 +14,9 @@
# ============================================================================
"""train resnet."""
import os
import random
import argparse
import numpy as np
from mindspore import context
from mindspore import dataset as de
from mindspore.common import set_seed
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.crossentropy import CrossEntropy
@ -32,9 +30,7 @@ parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
args_opt = parser.parse_args()
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
if __name__ == '__main__':
target = args_opt.device_target

View File

@ -14,13 +14,12 @@
# ============================================================================
"""train resnet."""
import os
import random
import argparse
import numpy as np
from mindspore import context
from mindspore import Tensor
from mindspore import dataset as de
from mindspore.common import set_seed
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.context import ParallelMode
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor
@ -46,9 +45,7 @@ else:
from src.thor import THOR_GPU as THOR
from src.config import config_gpu as config
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch, decay_epochs=100):

View File

@ -151,7 +151,6 @@ class KaimingUniform(KaimingInit):
def _initialize(self, arr):
fan = _select_fan(arr, self.mode)
bound = math.sqrt(3.0) * self.gain / math.sqrt(fan)
np.random.seed(0)
data = np.random.uniform(-bound, bound, arr.shape)
_assignment(arr, data)
@ -179,7 +178,6 @@ class KaimingNormal(KaimingInit):
def _initialize(self, arr):
fan = _select_fan(arr, self.mode)
std = self.gain / math.sqrt(fan)
np.random.seed(0)
data = np.random.normal(0, std, arr.shape)
_assignment(arr, data)
@ -195,7 +193,6 @@ def default_recurisive_init(custom_cell):
if cell.bias is not None:
fan_in, _ = _calculate_in_and_out(cell.weight)
bound = 1 / math.sqrt(fan_in)
np.random.seed(0)
cell.bias.default_input = init.initializer(init.Uniform(bound),
cell.bias.shape,
cell.bias.dtype)
@ -206,7 +203,6 @@ def default_recurisive_init(custom_cell):
if cell.bias is not None:
fan_in, _ = _calculate_in_and_out(cell.weight)
bound = 1 / math.sqrt(fan_in)
np.random.seed(0)
cell.bias.default_input = init.initializer(init.Uniform(bound),
cell.bias.shape,
cell.bias.dtype)

View File

@ -28,6 +28,7 @@ from mindspore.train.callback import CheckpointConfig, Callback
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.model import Model
from mindspore.train.loss_scale_manager import DynamicLossScaleManager, FixedLossScaleManager
from mindspore.common import set_seed
from src.dataset import classification_dataset
from src.crossentropy import CrossEntropy
@ -38,6 +39,7 @@ from src.utils.optimizers__init__ import get_param_groups
from src.image_classification import get_network
from src.config import config
set_seed(1)
class BuildTrainNetwork(nn.Cell):
"""build training network"""

View File

@ -16,14 +16,11 @@
import argparse
import ast
import os
import random
import numpy as np
from network import ShuffleNetV2
import mindspore.nn as nn
from mindspore import context
from mindspore import dataset as de
from mindspore.context import ParallelMode
from mindspore import Tensor
from mindspore.communication.management import init, get_rank, get_group_size
@ -31,14 +28,13 @@ from mindspore.nn.optim.momentum import Momentum
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.config import config_gpu as cfg
from src.dataset import create_dataset
from src.lr_generator import get_lr_basic
random.seed(cfg.random_seed)
np.random.seed(cfg.random_seed)
de.config.set_seed(cfg.random_seed)
set_seed(cfg.random_seed)
if __name__ == '__main__':

View File

@ -14,7 +14,6 @@
# ============================================================================
"""Parameters utils"""
import numpy as np
from mindspore.common.initializer import initializer, TruncatedNormal
def init_net_param(network, initialize_mode='TruncatedNormal'):
@ -22,7 +21,6 @@ def init_net_param(network, initialize_mode='TruncatedNormal'):
params = network.trainable_params()
for p in params:
if 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
np.random.seed(seed=1)
if initialize_mode == 'TruncatedNormal':
p.set_parameter_data(initializer(TruncatedNormal(), p.data.shape, p.data.dtype))
else:

View File

@ -25,12 +25,14 @@ from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMoni
from mindspore.train import Model
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2
from src.config import config
from src.dataset import create_ssd_dataset, data_to_mindrecord_byte_image, voc_data_to_mindrecord
from src.lr_schedule import get_lr
from src.init_params import init_net_param, filter_checkpoint_parameter
set_seed(1)
def main():
parser = argparse.ArgumentParser(description="SSD training")

View File

@ -151,7 +151,6 @@ class KaimingUniform(KaimingInit):
def _initialize(self, arr):
fan = _select_fan(arr, self.mode)
bound = math.sqrt(3.0) * self.gain / math.sqrt(fan)
np.random.seed(0)
data = np.random.uniform(-bound, bound, arr.shape)
_assignment(arr, data)
@ -179,7 +178,6 @@ class KaimingNormal(KaimingInit):
def _initialize(self, arr):
fan = _select_fan(arr, self.mode)
std = self.gain / math.sqrt(fan)
np.random.seed(0)
data = np.random.normal(0, std, arr.shape)
_assignment(arr, data)
@ -195,7 +193,6 @@ def default_recurisive_init(custom_cell):
if cell.bias is not None:
fan_in, _ = _calculate_in_and_out(cell.weight)
bound = 1 / math.sqrt(fan_in)
np.random.seed(0)
cell.bias.default_input = init.initializer(init.Uniform(bound),
cell.bias.shape,
cell.bias.dtype)
@ -206,7 +203,6 @@ def default_recurisive_init(custom_cell):
if cell.bias is not None:
fan_in, _ = _calculate_in_and_out(cell.weight)
bound = 1 / math.sqrt(fan_in)
np.random.seed(0)
cell.bias.default_input = init.initializer(init.Uniform(bound),
cell.bias.shape,
cell.bias.dtype)

View File

@ -19,9 +19,6 @@ python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
import argparse
import datetime
import os
import random
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
@ -33,6 +30,7 @@ from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_param_into_net, load_checkpoint
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.common import set_seed
from src.dataset import vgg_create_dataset
from src.dataset import classification_dataset
@ -45,8 +43,7 @@ from src.utils.util import get_param_groups
from src.vgg import vgg16
random.seed(1)
np.random.seed(1)
set_seed(1)
def parse_args(cloud_args=None):

View File

@ -15,11 +15,9 @@
"""Warpctc evaluation"""
import os
import math as m
import random
import argparse
import numpy as np
from mindspore import context
from mindspore import dataset as de
from mindspore.common import set_seed
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
@ -29,9 +27,7 @@ from src.dataset import create_dataset
from src.warpctc import StackedRNN, StackedRNNForGPU
from src.metric import WarpCTCAccuracy
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
parser = argparse.ArgumentParser(description="Warpctc training")
parser.add_argument("--dataset_path", type=str, default=None, help="Dataset, default is None.")

View File

@ -15,12 +15,10 @@
"""Warpctc training"""
import os
import math as m
import random
import argparse
import numpy as np
import mindspore.nn as nn
from mindspore import context
from mindspore import dataset as de
from mindspore.common import set_seed
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.nn.wrap import WithLossCell
@ -34,9 +32,7 @@ from src.warpctc import StackedRNN, StackedRNNForGPU
from src.warpctc_for_train import TrainOneStepCellWithGradClip
from src.lr_schedule import get_lr
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
parser = argparse.ArgumentParser(description="Warpctc training")
parser.add_argument("--run_distribute", action='store_true', help="Run distribute, default is false.")

View File

@ -21,9 +21,6 @@ from mindspore.common.initializer import Initializer as MeInitializer
import mindspore.nn as nn
np.random.seed(5)
def calculate_gain(nonlinearity, param=None):
r"""Return the recommended gain value for the given nonlinearity function.
The values are as follows:

View File

@ -30,6 +30,7 @@ import mindspore as ms
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore import amp
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.common import set_seed
from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper
from src.logger import get_logger
@ -41,6 +42,7 @@ from src.initializer import default_recurisive_init
from src.config import ConfigYOLOV3DarkNet53
from src.util import keep_loss_fp32
set_seed(1)
class BuildTrainNetwork(nn.Cell):
def __init__(self, network, criterion):

View File

@ -21,9 +21,6 @@ import mindspore.nn as nn
from mindspore import Tensor
np.random.seed(5)
def calculate_gain(nonlinearity, param=None):
r"""Return the recommended gain value for the given nonlinearity function.
The values are as follows:

View File

@ -29,6 +29,7 @@ from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
import mindspore as ms
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.quant import quant
from mindspore.common import set_seed
from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper
from src.logger import get_logger
@ -41,6 +42,7 @@ from src.config import ConfigYOLOV3DarkNet53
from src.transforms import batch_preprocess_true_box, batch_preprocess_true_box_single
from src.util import ShapeRecord
set_seed(1)
devid = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,

View File

@ -34,11 +34,13 @@ from mindspore.train import Model
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common.initializer import initializer
from mindspore.common import set_seed
from src.yolov3 import yolov3_resnet18, YoloWithLossCell, TrainingWrapper
from src.dataset import create_yolo_dataset, data_to_mindrecord_byte_image
from src.config import ConfigYOLOV3ResNet18
set_seed(1)
def get_lr(learning_rate, start_step, global_step, decay_step, decay_rate, steps=False):
"""Set learning rate."""
@ -54,7 +56,7 @@ def get_lr(learning_rate, start_step, global_step, decay_step, decay_rate, steps
def init_net_param(network, init_value='ones'):
"""Init:wq the parameters in network."""
"""Init the parameters in network."""
params = network.trainable_params()
for p in params:
if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:

View File

@ -19,12 +19,14 @@ import os
import numpy as np
import mindspore.context as context
from mindspore.train.serialization import save_checkpoint, load_checkpoint
from mindspore.common import set_seed
from src.config import GatConfig
from src.dataset import load_and_process
from src.gat import GAT
from src.utils import LossAccuracyWrapper, TrainGAT
set_seed(1)
def train():
"""Train GAT model."""

View File

@ -26,6 +26,7 @@ from matplotlib import pyplot as plt
from matplotlib import animation
from sklearn import manifold
from mindspore import context
from mindspore.common import set_seed
from src.gcn import GCN
from src.metrics import LossAccuracyWrapper, TrainNetWrapper
@ -55,7 +56,7 @@ def train():
parser.add_argument('--save_TSNE', type=ast.literal_eval, default=False, help='Whether to save t-SNE graph')
args_opt = parser.parse_args()
np.random.seed(args_opt.seed)
set_seed(args_opt.seed)
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend", save_graphs=False)
config = ConfigGCN()

View File

@ -19,7 +19,6 @@ python run_pretrain.py
import os
import argparse
import numpy
import mindspore.communication.management as D
import mindspore.common.dtype as mstype
from mindspore import context
@ -30,6 +29,7 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMoni
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecay
from mindspore import log as logger
from mindspore.common import set_seed
from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell, \
BertTrainAccumulateStepsWithLossScaleCell
from src.dataset import create_bert_dataset
@ -196,5 +196,5 @@ def run_pretrain():
if __name__ == '__main__':
numpy.random.seed(0)
set_seed(0)
run_pretrain()

View File

@ -19,7 +19,6 @@ python run_pretrain.py
import argparse
import os
import numpy
from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell
from src.bert_net_config import bert_net_cfg
from src.config import cfg
@ -36,6 +35,7 @@ from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
_current_dir = os.path.dirname(os.path.realpath(__file__))
@ -197,5 +197,5 @@ def run_pretrain():
if __name__ == '__main__':
numpy.random.seed(0)
set_seed(0)
run_pretrain()

View File

@ -30,6 +30,7 @@ from mindspore import context, Parameter
from mindspore.context import ParallelMode
from mindspore.communication import management as MultiAscend
from mindspore.train.serialization import load_checkpoint
from mindspore.common import set_seed
from config import TransformerConfig
from src.dataset import load_dataset
@ -337,7 +338,7 @@ if __name__ == '__main__':
_check_args(args.config)
_config = get_config(args.config)
np.random.seed(_config.random_seed)
set_seed(_config.random_seed)
context.set_context(save_graphs=_config.save_graphs)
if _rank_size is not None and int(_rank_size) > 1:

View File

@ -18,7 +18,6 @@
import os
import argparse
import datetime
import numpy
import mindspore.communication.management as D
import mindspore.common.dtype as mstype
from mindspore import context
@ -28,6 +27,7 @@ from mindspore.context import ParallelMode
from mindspore.nn.optim import AdamWeightDecay
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore import log as logger
from mindspore.common import set_seed
from src.dataset import create_tinybert_dataset, DataType
from src.utils import LossCallBack, ModelSaveCkpt, BertLearningRate
from src.gd_config import common_cfg, bert_teacher_net_cfg, bert_student_net_cfg
@ -154,5 +154,5 @@ def run_general_distill():
sink_size=args_opt.data_sink_steps)
if __name__ == '__main__':
numpy.random.seed(0)
set_seed(0)
run_general_distill()

View File

@ -16,8 +16,6 @@
import time
import argparse
import random
import numpy as np
import mindspore.common.dtype as mstype
from mindspore.common.tensor import Tensor
@ -27,10 +25,10 @@ from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint
from mindspore.train.callback import Callback, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset.engine as de
import mindspore.communication.management as D
from mindspore.context import ParallelMode
from mindspore import context
from mindspore.common import set_seed
from src.transformer_for_train import TransformerTrainOneStepCell, TransformerNetworkWithLoss, \
TransformerTrainOneStepWithLossScaleCell
@ -38,10 +36,7 @@ from src.config import cfg, transformer_net_cfg
from src.dataset import create_transformer_dataset
from src.lr_schedule import create_dynamic_lr
random_seed = 1
random.seed(random_seed)
np.random.seed(random_seed)
de.config.set_seed(random_seed)
set_seed(1)
def get_ms_timestamp():
t = time.time()

View File

@ -16,15 +16,13 @@
import os
import sys
import argparse
import random
import numpy as np
from mindspore import context
from mindspore.context import ParallelMode
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.model import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
import mindspore.dataset.engine as de
from mindspore.common import set_seed
from src.deepfm import ModelBuilder, AUCMetric
from src.config import DataConfig, ModelConfig, TrainConfig
@ -46,9 +44,7 @@ args_opt, _ = parser.parse_known_args()
args_opt.do_eval = args_opt.do_eval == 'True'
rank_size = int(os.environ.get("RANK_SIZE", 1))
random.seed(1)
np.random.seed(1)
de.config.set_seed(1)
set_seed(1)
if __name__ == '__main__':
data_config = DataConfig()

View File

@ -17,11 +17,11 @@
import os
import sys
import numpy as np
from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.context import ParallelMode
from mindspore.communication.management import get_rank, get_group_size, init
from mindspore.common import set_seed
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack, EvalCallBack
@ -69,7 +69,7 @@ def train_and_eval(config):
"""
test_train_eval
"""
np.random.seed(1000)
set_seed(1000)
data_path = config.data_path
batch_size = config.batch_size
epochs = config.epochs

View File

@ -17,11 +17,11 @@
import os
import sys
import numpy as np
from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.context import ParallelMode
from mindspore.communication.management import get_rank, get_group_size, init
from mindspore.common import set_seed
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack, EvalCallBack
@ -70,7 +70,7 @@ def train_and_eval(config):
"""
test_train_eval
"""
np.random.seed(1000)
set_seed(1000)
data_path = config.data_path
batch_size = config.batch_size
epochs = config.epochs

View File

@ -16,12 +16,12 @@
import os
import sys
import numpy as np
from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.callback import TimeMonitor
from mindspore.context import ParallelMode
from mindspore.communication.management import get_rank, get_group_size, init
from mindspore.common import set_seed
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack, EvalCallBack
@ -69,7 +69,7 @@ def train_and_eval(config):
"""
train_and_eval
"""
np.random.seed(1000)
set_seed(1000)
data_path = config.data_path
epochs = config.epochs
print("epochs is {}".format(epochs))