forked from mindspore-Ecosystem/mindspore
Add ST test script of bert with loss scale
This commit is contained in:
parent
e69dff1548
commit
e071f04d4b
|
@ -445,5 +445,5 @@ class BertTrainOneStepWithLossScaleCell(nn.Cell):
|
||||||
succ = False
|
succ = False
|
||||||
else:
|
else:
|
||||||
succ = self.optimizer(grads)
|
succ = self.optimizer(grads)
|
||||||
ret = (loss, cond)
|
ret = (loss, cond, scaling_sens)
|
||||||
return F.depend(ret, succ)
|
return F.depend(ret, succ)
|
||||||
|
|
|
@ -0,0 +1,198 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""train bert network without lossscale"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import pytest
|
||||||
|
import numpy as np
|
||||||
|
from numpy import allclose
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
import mindspore.dataset.engine.datasets as de
|
||||||
|
import mindspore.dataset.transforms.c_transforms as C
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore.common.tensor import Tensor
|
||||||
|
from mindspore.train.model import Model
|
||||||
|
from mindspore.train.callback import Callback, LossMonitor
|
||||||
|
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
||||||
|
from mindspore.model_zoo.Bert_NEZHA import BertConfig, BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
|
||||||
|
from mindspore.nn.optim import Momentum
|
||||||
|
from mindspore import log as logger
|
||||||
|
_current_dir = os.path.dirname(os.path.realpath(__file__))
|
||||||
|
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
|
||||||
|
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
|
||||||
|
|
||||||
|
def get_config(version='base', batch_size=1):
|
||||||
|
"""get config"""
|
||||||
|
if version == 'base':
|
||||||
|
bert_config = BertConfig(
|
||||||
|
batch_size=batch_size,
|
||||||
|
seq_length=128,
|
||||||
|
vocab_size=21136,
|
||||||
|
hidden_size=768,
|
||||||
|
num_hidden_layers=2,
|
||||||
|
num_attention_heads=12,
|
||||||
|
intermediate_size=3072,
|
||||||
|
hidden_act="gelu",
|
||||||
|
hidden_dropout_prob=0.1,
|
||||||
|
attention_probs_dropout_prob=0.1,
|
||||||
|
max_position_embeddings=512,
|
||||||
|
type_vocab_size=2,
|
||||||
|
initializer_range=0.02,
|
||||||
|
use_relative_positions=True,
|
||||||
|
input_mask_from_dataset=True,
|
||||||
|
token_type_ids_from_dataset=True,
|
||||||
|
dtype=mstype.float32,
|
||||||
|
compute_type=mstype.float32)
|
||||||
|
elif version == 'large':
|
||||||
|
bert_config = BertConfig(
|
||||||
|
batch_size=batch_size,
|
||||||
|
seq_length=128,
|
||||||
|
vocab_size=21136,
|
||||||
|
hidden_size=1024,
|
||||||
|
num_hidden_layers=2,
|
||||||
|
num_attention_heads=16,
|
||||||
|
intermediate_size=4096,
|
||||||
|
hidden_act="gelu",
|
||||||
|
hidden_dropout_prob=0.0,
|
||||||
|
attention_probs_dropout_prob=0.0,
|
||||||
|
max_position_embeddings=512,
|
||||||
|
type_vocab_size=2,
|
||||||
|
initializer_range=0.02,
|
||||||
|
use_relative_positions=True,
|
||||||
|
input_mask_from_dataset=True,
|
||||||
|
token_type_ids_from_dataset=True,
|
||||||
|
dtype=mstype.float32,
|
||||||
|
compute_type=mstype.float16)
|
||||||
|
elif version == 'large_mixed':
|
||||||
|
bert_config = BertConfig(
|
||||||
|
batch_size=batch_size,
|
||||||
|
seq_length=128,
|
||||||
|
vocab_size=21136,
|
||||||
|
hidden_size=1024,
|
||||||
|
num_hidden_layers=24,
|
||||||
|
num_attention_heads=16,
|
||||||
|
intermediate_size=4096,
|
||||||
|
hidden_act="gelu",
|
||||||
|
hidden_dropout_prob=0.0,
|
||||||
|
attention_probs_dropout_prob=0.0,
|
||||||
|
max_position_embeddings=512,
|
||||||
|
type_vocab_size=2,
|
||||||
|
initializer_range=0.02,
|
||||||
|
use_relative_positions=True,
|
||||||
|
input_mask_from_dataset=True,
|
||||||
|
token_type_ids_from_dataset=True,
|
||||||
|
dtype=mstype.float32,
|
||||||
|
compute_type=mstype.float32)
|
||||||
|
else:
|
||||||
|
bert_config = BertConfig(batch_size=batch_size)
|
||||||
|
return bert_config
|
||||||
|
|
||||||
|
def me_de_train_dataset():
|
||||||
|
"""test me de train dataset"""
|
||||||
|
# apply repeat operations
|
||||||
|
repeat_count = 1
|
||||||
|
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
|
||||||
|
"next_sentence_labels", "masked_lm_positions",
|
||||||
|
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
|
||||||
|
type_cast_op = C.TypeCast(mstype.int32)
|
||||||
|
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
|
||||||
|
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)
|
||||||
|
ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op)
|
||||||
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
||||||
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
||||||
|
ds = ds.map(input_columns="input_ids", operations=type_cast_op)
|
||||||
|
# apply batch operations
|
||||||
|
batch_size = int(os.getenv('BATCH_SIZE', '16'))
|
||||||
|
ds = ds.batch(batch_size, drop_remainder=True)
|
||||||
|
ds = ds.repeat(repeat_count)
|
||||||
|
return ds
|
||||||
|
|
||||||
|
def weight_variable(shape):
|
||||||
|
"""weight variable"""
|
||||||
|
np.random.seed(1)
|
||||||
|
ones = np.random.uniform(-0.1, 0.1, size=shape).astype(np.float32)
|
||||||
|
return Tensor(ones)
|
||||||
|
|
||||||
|
class ModelCallback(Callback):
|
||||||
|
def __init__(self):
|
||||||
|
super(ModelCallback, self).__init__()
|
||||||
|
self.loss_list = []
|
||||||
|
self.overflow_list = []
|
||||||
|
self.lossscale_list = []
|
||||||
|
|
||||||
|
def step_end(self, run_context):
|
||||||
|
cb_params = run_context.original_args()
|
||||||
|
self.loss_list.append(cb_params.net_outputs[0])
|
||||||
|
self.overflow_list.append(cb_params.net_outputs[1])
|
||||||
|
self.lossscale_list.append(cb_params.net_outputs[2])
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_bert_tdt():
|
||||||
|
"""test bert tdt"""
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
|
||||||
|
context.set_context(enable_task_sink=True)
|
||||||
|
context.set_context(enable_loop_sink=True)
|
||||||
|
context.set_context(enable_mem_reuse=True)
|
||||||
|
ds = me_de_train_dataset()
|
||||||
|
version = os.getenv('VERSION', 'large')
|
||||||
|
batch_size = int(os.getenv('BATCH_SIZE', '16'))
|
||||||
|
config = get_config(version=version, batch_size=batch_size)
|
||||||
|
netwithloss = BertNetworkWithLoss(config, True)
|
||||||
|
optimizer = Momentum(netwithloss.trainable_params(), learning_rate=2e-5, momentum=0.9)
|
||||||
|
scale_window = 3
|
||||||
|
scale_manager = DynamicLossScaleManager(2**32, 2, scale_window)
|
||||||
|
netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer, scale_update_cell=scale_manager.get_update_cell())
|
||||||
|
netwithgrads.set_train(True)
|
||||||
|
model = Model(netwithgrads)
|
||||||
|
callback = ModelCallback()
|
||||||
|
params = netwithloss.trainable_params()
|
||||||
|
for param in params:
|
||||||
|
value = param.default_input
|
||||||
|
name = param.name
|
||||||
|
if isinstance(value, Tensor):
|
||||||
|
if name.split('.')[-1] in ['weight']:
|
||||||
|
if name.split('.')[-3] in ['cls2']:
|
||||||
|
logger.info("***************** BERT param name is 1 {}".format(name))
|
||||||
|
param.default_input = weight_variable(value.asnumpy().shape)
|
||||||
|
else:
|
||||||
|
logger.info("***************** BERT param name is 2 {}".format(name))
|
||||||
|
tempshape = value.asnumpy().shape
|
||||||
|
shape = (tempshape[1], tempshape[0])
|
||||||
|
weight_value = weight_variable(shape).asnumpy()
|
||||||
|
param.default_input = Tensor(np.transpose(weight_value, [1, 0]))
|
||||||
|
else:
|
||||||
|
logger.info("***************** BERT param name is 3 {}".format(name))
|
||||||
|
param.default_input = weight_variable(value.asnumpy().shape)
|
||||||
|
model.train(ds.get_repeat_count(), ds, callbacks=callback, dataset_sink_mode=False)
|
||||||
|
|
||||||
|
# assertion occurs while the loss_scale value is wrong
|
||||||
|
count = 0
|
||||||
|
for i in range(len(callback.overflow_list)):
|
||||||
|
if callback.overflow_list[i] == Tensor(True, mstype.bool_) and i > 0:
|
||||||
|
count = 0
|
||||||
|
assert callback.lossscale_list[i] == callback.lossscale_list[i - 1] * Tensor(0.5, mstype.float32)
|
||||||
|
if callback.overflow_list[i] == Tensor(False, mstype.bool_):
|
||||||
|
count = count + 1
|
||||||
|
if count == scale_window:
|
||||||
|
count = 0
|
||||||
|
assert callback.lossscale_list[i] == callback.lossscale_list[i - 1] * Tensor(2.0, mstype.float32)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_bert_tdt()
|
Loading…
Reference in New Issue