forked from mindspore-Ecosystem/mindspore
!6607 delete SoftmaxCrossEntropyExpand interface
Merge pull request !6607 from ghzl/delete-SoftmaxCrossEntropyExpand
This commit is contained in:
commit
dde9f5ac25
|
@ -20,9 +20,8 @@ It shows how well the model works on a dataset and the optimization target which
|
|||
"""
|
||||
|
||||
from .loss import L1Loss, MSELoss, SmoothL1Loss, \
|
||||
SoftmaxCrossEntropyWithLogits, SoftmaxCrossEntropyExpand, CosineEmbeddingLoss
|
||||
SoftmaxCrossEntropyWithLogits, CosineEmbeddingLoss
|
||||
|
||||
__all__ = ['L1Loss', 'MSELoss', 'SmoothL1Loss',
|
||||
'SoftmaxCrossEntropyWithLogits',
|
||||
'SoftmaxCrossEntropyExpand',
|
||||
'CosineEmbeddingLoss']
|
||||
|
|
|
@ -262,70 +262,6 @@ class SoftmaxCrossEntropyWithLogits(_Loss):
|
|||
return self.get_loss(x)
|
||||
|
||||
|
||||
class SoftmaxCrossEntropyExpand(Cell):
|
||||
r"""
|
||||
Computes softmax cross entropy between logits and labels. Implemented by expanded formula.
|
||||
|
||||
This is a wrapper of several functions.
|
||||
|
||||
.. math::
|
||||
\ell(x_i, t_i) = -log\left(\frac{\exp(x_{t_i})}{\sum_j \exp(x_j)}\right),
|
||||
where :math:`x_i` is a 1D score Tensor, :math:`t_i` is the target class.
|
||||
|
||||
Note:
|
||||
When argument sparse is set to True, the format of the label is the index
|
||||
ranging from :math:`0` to :math:`C - 1` instead of one-hot vectors.
|
||||
|
||||
Args:
|
||||
sparse(bool): Specifies whether labels use sparse format or not. Default: False.
|
||||
|
||||
Inputs:
|
||||
- **input_data** (Tensor) - Tensor of shape :math:`(x_1, x_2, ..., x_R)`.
|
||||
- **label** (Tensor) - Tensor of shape :math:`(y_1, y_2, ..., y_S)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, a scalar tensor including the mean loss.
|
||||
|
||||
Examples:
|
||||
>>> loss = nn.SoftmaxCrossEntropyExpand(sparse=True)
|
||||
>>> input_data = Tensor(np.ones([64, 512]), dtype=mindspore.float32)
|
||||
>>> label = Tensor(np.ones([64]), dtype=mindspore.int32)
|
||||
>>> loss(input_data, label)
|
||||
"""
|
||||
def __init__(self, sparse=False):
|
||||
super(SoftmaxCrossEntropyExpand, self).__init__()
|
||||
self.exp = P.Exp()
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=True)
|
||||
self.onehot = P.OneHot()
|
||||
self.on_value = Tensor(1.0, mstype.float32)
|
||||
self.off_value = Tensor(0.0, mstype.float32)
|
||||
self.div = P.Div()
|
||||
self.log = P.Log()
|
||||
self.sum_cross_entropy = P.ReduceSum(keep_dims=False)
|
||||
self.mul = P.Mul()
|
||||
self.mul2 = P.Mul()
|
||||
self.cast = P.Cast()
|
||||
self.reduce_mean = P.ReduceMean(keep_dims=False)
|
||||
self.sparse = sparse
|
||||
self.reduce_max = P.ReduceMax(keep_dims=True)
|
||||
self.sub = P.Sub()
|
||||
|
||||
def construct(self, logit, label):
|
||||
logit_max = self.reduce_max(logit, -1)
|
||||
exp = self.exp(self.sub(logit, logit_max))
|
||||
exp_sum = self.reduce_sum(exp, -1)
|
||||
softmax_result = self.div(exp, exp_sum)
|
||||
if self.sparse:
|
||||
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
|
||||
softmax_result_log = self.log(softmax_result)
|
||||
loss = self.sum_cross_entropy((self.mul(softmax_result_log, label)), -1)
|
||||
loss = self.mul2(F.scalar_to_array(-1.0), loss)
|
||||
loss = self.reduce_mean(loss, -1)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_reduced_shape_valid(ori_shape, reduced_shape, axis, cls_name):
|
||||
validator.check_reduce_shape(ori_shape, reduced_shape, axis, cls_name)
|
||||
|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import _executor
|
||||
from ..ut_filter import non_graph_engine
|
||||
|
||||
|
||||
|
@ -54,15 +53,6 @@ def test_SoftmaxCrossEntropyWithLogits_reduce():
|
|||
loss(logits, labels)
|
||||
|
||||
|
||||
def test_SoftmaxCrossEntropyExpand():
|
||||
from mindspore import context
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
loss = nn.SoftmaxCrossEntropyExpand()
|
||||
|
||||
logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
|
||||
labels = Tensor(np.random.randint(0, 9, [10,]).astype(np.float32))
|
||||
_executor.compile(loss, logits, labels)
|
||||
|
||||
def test_cosine_embedding_loss():
|
||||
""" test CosineEmbeddingLoss """
|
||||
loss = nn.CosineEmbeddingLoss()
|
||||
|
|
|
@ -1,31 +0,0 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn.loss.loss import SoftmaxCrossEntropyExpand
|
||||
|
||||
|
||||
def test_SoftmaxCrossEntropy():
|
||||
net = SoftmaxCrossEntropyExpand(sparse=True)
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
logit = Tensor(np.ones([64, 512]), dtype=mstype.float32)
|
||||
label = Tensor(np.ones([64]), dtype=mstype.int32)
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, logit, label)
|
Loading…
Reference in New Issue