optimize the comment and log descriptions

修改:     cell.py
	修改:     loss/loss.py
	修改:     metrics/hausdorff_distance.py
	修改:     metrics/mean_surface_distance.py
	修改:     metrics/root_mean_square_surface_distance.py
	修改:     mindspore/nn/dynamic_lr.py
	修改:     mindspore/nn/learning_rate_schedule.py

	修改:     .jenkins/check/config/whitelizard.txt
This commit is contained in:
zhunaipan 2021-10-14 19:58:35 +08:00
parent ec981124d0
commit db08e766b6
6 changed files with 32 additions and 33 deletions

View File

@ -17,6 +17,7 @@ mindspore/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py:__init
mindspore/model_zoo/official/recommend/wide_and_deep_multitable/src/wide_and_deep.py:__init__ mindspore/model_zoo/official/recommend/wide_and_deep_multitable/src/wide_and_deep.py:__init__
mindspore/mindspore/ccsrc/pipeline/jit/resource.cc:mindspore::pipeline::GetMethodMap mindspore/mindspore/ccsrc/pipeline/jit/resource.cc:mindspore::pipeline::GetMethodMap
mindspore/mindspore/ops/operations/array_ops.py:_compute_slicing_shape mindspore/mindspore/ops/operations/array_ops.py:_compute_slicing_shape
mindspore/mindspore/context.py:set_auto_parallel_context
mindspore/mindspore/common/tensor.py:__init__ mindspore/mindspore/common/tensor.py:__init__
mindspore/mindspore/common/parameter.py:set_data mindspore/mindspore/common/parameter.py:set_data
mindspore/mindspore/ccsrc/pybind_api/ir/tensor_py.cc:mindspore::tensor::GetDataType mindspore/mindspore/ccsrc/pybind_api/ir/tensor_py.cc:mindspore::tensor::GetDataType

View File

@ -157,7 +157,7 @@ def check_number(arg_value, value, rel, arg_type=int, arg_name=None, prim_name=N
if isinstance(arg_value, arg_type): if isinstance(arg_value, arg_type):
if math.isinf(arg_value) or math.isnan(arg_value) or np.isinf(arg_value) or np.isnan(arg_value): if math.isinf(arg_value) or math.isnan(arg_value) or np.isinf(arg_value) or np.isnan(arg_value):
raise ValueError(f'{arg_name} {prim_name} must be legal value, but got `{arg_value}`.') raise ValueError(f'{arg_name} {prim_name} must be a legal value, but got `{arg_value}`.')
else: else:
raise TypeError(f'{arg_name} {prim_name} must be {arg_type.__name__}, but got `{type(arg_value).__name__}`') raise TypeError(f'{arg_name} {prim_name} must be {arg_type.__name__}, but got `{type(arg_value).__name__}`')
@ -184,7 +184,7 @@ def check_is_number(arg_value, arg_type, arg_name=None, prim_name=None):
arg_name = f"\'{arg_name}\'" if arg_name else 'input value' arg_name = f"\'{arg_name}\'" if arg_name else 'input value'
if isinstance(arg_value, arg_type) and not isinstance(arg_value, bool): if isinstance(arg_value, arg_type) and not isinstance(arg_value, bool):
if math.isinf(arg_value) or math.isnan(arg_value) or np.isinf(arg_value) or np.isnan(arg_value): if math.isinf(arg_value) or math.isnan(arg_value) or np.isinf(arg_value) or np.isnan(arg_value):
raise ValueError(f'{prim_name} {arg_name} must be legal float, but got `{arg_value}`.') raise ValueError(f'{prim_name} {arg_name} must be a legal float, but got `{arg_value}`.')
return arg_value return arg_value
raise TypeError(f'{prim_name} type of {arg_name} must be {arg_type.__name__}, but got `{type(arg_value).__name__}`') raise TypeError(f'{prim_name} type of {arg_name} must be {arg_type.__name__}, but got `{type(arg_value).__name__}`')
@ -665,7 +665,7 @@ class Validator:
# if multiple arguments provided, it must be `ndim` number of ints # if multiple arguments provided, it must be `ndim` number of ints
if len(axes) != ndim: if len(axes) != ndim:
raise ValueError("The number of axes must equal to the dimension of tensor.") raise ValueError("The number of axes must be equal to the dimension of tensor.")
return axes return axes
@staticmethod @staticmethod
@ -705,11 +705,11 @@ class Validator:
if isinstance(axes, (tuple, list)): if isinstance(axes, (tuple, list)):
for axis in axes: for axis in axes:
if not isinstance(axis, int): if not isinstance(axis, int):
raise TypeError(f"axis argument should be integer, but got {type(axis)}.") raise TypeError(f"The axis argument should be integer, but got {type(axis)}.")
Validator.check_axis_in_range(axis, ndim) Validator.check_axis_in_range(axis, ndim)
axes = tuple(map(lambda x: x % ndim, axes)) axes = tuple(map(lambda x: x % ndim, axes))
return axes return axes
raise TypeError(f"axes should be integer, list or tuple for check, but got {type(axes)}.") raise TypeError(f"The axes should be integer, list or tuple for check, but got {type(axes)}.")
@staticmethod @staticmethod
def prepare_shape_for_squeeze(shape, axes): def prepare_shape_for_squeeze(shape, axes):
@ -730,33 +730,33 @@ class Validator:
# Convert to set # Convert to set
if isinstance(axes, int): if isinstance(axes, int):
if axes >= ndim or axes < -ndim: if axes >= ndim or axes < -ndim:
raise ValueError(f"axis {axes} is out of bounds for tensor of dimension {ndim}") raise ValueError(f"The axis {axes} is out of bounds for tensor of dimension {ndim}")
axes = {axes} axes = {axes}
elif isinstance(axes, (list, tuple)): elif isinstance(axes, (list, tuple)):
for axis in axes: for axis in axes:
if axis >= ndim or axis < -ndim: if axis >= ndim or axis < -ndim:
raise ValueError(f"axis {axis} is out of bounds for tensor of dimension {ndim}") raise ValueError(f"The axis {axis} is out of bounds for tensor of dimension {ndim}")
axes = set(axes) axes = set(axes)
else: else:
raise TypeError(f"only int, tuple and list are allowed for axes, but got {type(axes)}") raise TypeError(f"Only int, tuple and list are allowed for axes, but got {type(axes)}")
for idx, s in enumerate(shape): for idx, s in enumerate(shape):
if s != 1 or (idx not in axes) and (idx - ndim not in axes): if s != 1 or (idx not in axes) and (idx - ndim not in axes):
new_shape.append(s) new_shape.append(s)
# if an axis is selected with shape entry greater than one, an error is raised. # if an axis is selected with shape entry greater than one, an error is raised.
if s != 1 and ((idx in axes) or (idx - ndim in axes)): if s != 1 and ((idx in axes) or (idx - ndim in axes)):
raise ValueError(f"axis {axes} has shape entry {s} > 1, cannot be squeezed.") raise ValueError(f"The axis {axes} has shape entry {s} > 1, cannot be squeezed.")
return tuple(new_shape) return tuple(new_shape)
@staticmethod @staticmethod
def check_axis_in_range(axis, ndim): def check_axis_in_range(axis, ndim):
"""Checks axes are with the bounds of ndim""" """Checks axes are with the bounds of ndim"""
if not isinstance(axis, int): if not isinstance(axis, int):
raise TypeError(f'axes should be integers, not {type(axis)}') raise TypeError(f'The axes should be integers, not {type(axis)}')
if not -ndim <= axis < ndim: if not -ndim <= axis < ndim:
raise ValueError(f'axis {axis} is out of bounds for array of dimension {ndim}') raise ValueError(f'The axis {axis} is out of bounds for array of dimension {ndim}')
return axis % ndim return axis % ndim
@staticmethod @staticmethod
@ -809,7 +809,7 @@ class Validator:
for items in zip_longest(*reversed_shapes, fillvalue=1): for items in zip_longest(*reversed_shapes, fillvalue=1):
max_size = 0 if 0 in items else max(items) max_size = 0 if 0 in items else max(items)
if any(item not in (1, max_size) for item in items): if any(item not in (1, max_size) for item in items):
raise ValueError(f'operands could not be broadcast together with shapes {*shapes,}') raise ValueError(f'The operands could not be broadcast together with shapes {*shapes,}')
shape_out.appendleft(max_size) shape_out.appendleft(max_size)
return tuple(shape_out) return tuple(shape_out)
@ -835,7 +835,7 @@ class Validator:
type_str += "tuple, " type_str += "tuple, "
if type_list: if type_list:
type_str += "list, " type_str += "list, "
raise TypeError(f"Axis should be {type_str}but got {type(axis)}.") raise TypeError(f"The axis should be {type_str}but got {type(axis)}.")
@staticmethod @staticmethod
def check_and_canonicalize_axes(axes, ndim): def check_and_canonicalize_axes(axes, ndim):
@ -846,7 +846,7 @@ class Validator:
if not isinstance(ax, int): if not isinstance(ax, int):
raise TypeError((f"Each axis should be integer, but got {type(ax)} in {axes}.")) raise TypeError((f"Each axis should be integer, but got {type(ax)} in {axes}."))
if not -ndim <= ax < ndim: if not -ndim <= ax < ndim:
raise ValueError(f'axis {ax} is out of bounds for array of dimension {ndim}') raise ValueError(f'The axis {ax} is out of bounds for array of dimension {ndim}')
ax = ax if ax >= 0 else ax + ndim ax = ax if ax >= 0 else ax + ndim
new_axes += (ax,) new_axes += (ax,)
if any(new_axes.count(el) > 1 for el in new_axes): if any(new_axes.count(el) > 1 for el in new_axes):
@ -956,7 +956,7 @@ def args_type_check(*type_args, **type_kwargs):
for name, value in argument_dict.items(): for name, value in argument_dict.items():
if name in bound_types: if name in bound_types:
if value is not None and not isinstance(value, bound_types[name]): if value is not None and not isinstance(value, bound_types[name]):
raise TypeError('Argument {} must be {}'.format(name, bound_types[name])) raise TypeError('The argument {} must be {}'.format(name, bound_types[name]))
return func(*args, **kwargs) return func(*args, **kwargs)
return wrapper return wrapper

View File

@ -141,7 +141,7 @@ class _Context:
Note: Note:
Create a context through instantiating Context object is not recommended. Create a context through instantiating Context object is not recommended.
should use context() to get the context since Context is singleton. should use context() to get the context since Context is a singleton.
""" """
_instance = None _instance = None
_instance_lock = threading.Lock() _instance_lock = threading.Lock()

View File

@ -244,11 +244,11 @@ class Cell(Cell_):
@pipeline_stage.setter @pipeline_stage.setter
def pipeline_stage(self, value): def pipeline_stage(self, value):
if isinstance(value, bool): if isinstance(value, bool):
raise TypeError("'pipeline_stage' must be int type, but got bool.") raise TypeError("'pipeline_stage' must be a int type, but got bool.")
if not isinstance(value, int): if not isinstance(value, int):
raise TypeError("'pipeline_stage' must be int type.") raise TypeError("'pipeline_stage' must be a int type.")
if value < 0: if value < 0:
raise TypeError("'pipeline_stage' can not less than 0.") raise TypeError("'pipeline_stage' can not be less than 0.")
self._pipeline_stage = value self._pipeline_stage = value
for item in self.trainable_params(): for item in self.trainable_params():
item.add_pipeline_stage(value) item.add_pipeline_stage(value)

View File

@ -710,7 +710,6 @@ def _check_ndim_multi(logits_dim, label_dim, prim_name=None):
if label_dim < 2: if label_dim < 2:
raise ValueError(f"{msg_prefix} Label dimension should be greater than 1, but got {label_dim}.") raise ValueError(f"{msg_prefix} Label dimension should be greater than 1, but got {label_dim}.")
@constexpr @constexpr
def _check_weights(weight_shape, label_shape, prim_name=None): def _check_weights(weight_shape, label_shape, prim_name=None):
"""Internal function, used to check whether the reduced shape meets the requirements.""" """Internal function, used to check whether the reduced shape meets the requirements."""
@ -1293,7 +1292,6 @@ def _check_ndim(logits_nidm, labels_ndim, prime_name=None):
raise ValueError(f"{msg_prefix} dimensions of 'logits' and 'labels' must be equal, but got" raise ValueError(f"{msg_prefix} dimensions of 'logits' and 'labels' must be equal, but got"
f"dimension of 'logits' {logits_nidm} and dimension of 'labels' {labels_ndim}.") f"dimension of 'logits' {logits_nidm} and dimension of 'labels' {labels_ndim}.")
@constexpr @constexpr
def _check_channel_and_shape(logits, labels, prime_name=None): def _check_channel_and_shape(logits, labels, prime_name=None):
'''Internal function, used to check whether the channels or shape of logits and labels meets the requirements.''' '''Internal function, used to check whether the channels or shape of logits and labels meets the requirements.'''

View File

@ -96,7 +96,7 @@ def _update_param(param, new_param, strict_load):
if param.data.shape != new_param.data.shape: if param.data.shape != new_param.data.shape:
if not _special_process_par(param, new_param): if not _special_process_par(param, new_param):
logger.error("Failed to combine the net and the parameters for param %s.", param.name) logger.error("Failed to combine the net and the parameters for param %s.", param.name)
msg = ("Net parameters {} shape({}) different from parameter_dict's({})" msg = ("Net parameters {} shape({}) are different from parameter_dict's({})"
.format(param.name, param.data.shape, new_param.data.shape)) .format(param.name, param.data.shape, new_param.data.shape))
raise RuntimeError(msg) raise RuntimeError(msg)
@ -107,7 +107,7 @@ def _update_param(param, new_param, strict_load):
return return
logger.error("Failed to combine the net and the parameters for param %s.", param.name) logger.error("Failed to combine the net and the parameters for param %s.", param.name)
msg = ("Net parameters {} type({}) different from parameter_dict's({})" msg = ("Net parameters {} type({}) are different from parameter_dict's({})"
.format(param.name, param.data.dtype, new_param.data.dtype)) .format(param.name, param.data.dtype, new_param.data.dtype))
raise RuntimeError(msg) raise RuntimeError(msg)
@ -124,7 +124,7 @@ def _update_param(param, new_param, strict_load):
elif isinstance(new_param.data, Tensor) and not isinstance(param.data, Tensor): elif isinstance(new_param.data, Tensor) and not isinstance(param.data, Tensor):
logger.error("Failed to combine the net and the parameters for param %s.", param.name) logger.error("Failed to combine the net and the parameters for param %s.", param.name)
msg = ("Net parameters {} type({}) different from parameter_dict's({})" msg = ("Net parameters {} type({}) are different from parameter_dict's({})"
.format(param.name, type(param.data), type(new_param.data))) .format(param.name, type(param.data), type(new_param.data)))
raise RuntimeError(msg) raise RuntimeError(msg)
@ -572,11 +572,11 @@ def load_param_into_net(net, parameter_dict, strict_load=False):
def _load_dismatch_prefix_params(net, parameter_dict, param_not_load, strict_load): def _load_dismatch_prefix_params(net, parameter_dict, param_not_load, strict_load):
"""When some net parameter did not load, try to continue load.""" """When some net parameter did not load, try to continue loading."""
prefix_name = "" prefix_name = ""
longest_name = param_not_load[0] longest_name = param_not_load[0]
while prefix_name != longest_name and param_not_load: while prefix_name != longest_name and param_not_load:
logger.debug("Count: {} parameters has not been loaded, try to load continue.".format(len(param_not_load))) logger.debug("Count: {} parameters has not been loaded, try to continue loading.".format(len(param_not_load)))
prefix_name = longest_name prefix_name = longest_name
for net_param_name in param_not_load: for net_param_name in param_not_load:
for dict_name in parameter_dict: for dict_name in parameter_dict:
@ -628,7 +628,7 @@ def _get_merged_param_data(net, param_name, param_data, integrated_save):
""" """
layout = net.parameter_layout_dict[param_name] layout = net.parameter_layout_dict[param_name]
if len(layout) < 6: if len(layout) < 6:
logger.info("layout dict does not contain the key %s", param_name) logger.info("The layout dict does not contain the key %s", param_name)
return param_data return param_data
dev_mat = layout[0] dev_mat = layout[0]
@ -645,7 +645,7 @@ def _get_merged_param_data(net, param_name, param_data, integrated_save):
if param_name in net.parallel_parameter_merge_net_dict: if param_name in net.parallel_parameter_merge_net_dict:
allgather_net = net.parallel_parameter_merge_net_dict[param_name] allgather_net = net.parallel_parameter_merge_net_dict[param_name]
else: else:
logger.info("need to create allgather net for %s", param_name) logger.info("Need to create allgather net for %s", param_name)
if integrated_save: if integrated_save:
if context.get_auto_parallel_context("pipeline_stages") > 1: if context.get_auto_parallel_context("pipeline_stages") > 1:
raise RuntimeError("Pipeline Parallel don't support Integrated save checkpoint now.") raise RuntimeError("Pipeline Parallel don't support Integrated save checkpoint now.")
@ -739,7 +739,7 @@ def export(net, *inputs, file_name, file_format='AIR', **kwargs):
net = _quant_export(net, *inputs, file_format=file_format, **kwargs) net = _quant_export(net, *inputs, file_format=file_format, **kwargs)
if 'enc_key' in kwargs.keys(): if 'enc_key' in kwargs.keys():
if file_format != 'MINDIR': if file_format != 'MINDIR':
raise ValueError(f"enc_key can be passed in only when file_format=='MINDIR', but got {file_format}") raise ValueError(f"The enc_key can be passed in only when file_format=='MINDIR', but got {file_format}")
enc_key = Validator.check_isinstance('enc_key', kwargs['enc_key'], bytes) enc_key = Validator.check_isinstance('enc_key', kwargs['enc_key'], bytes)
enc_mode = 'AES-GCM' enc_mode = 'AES-GCM'
@ -908,8 +908,8 @@ def _save_mindir_together(net_dict, model, file_name, is_encrypt, **kwargs):
param_data = net_dict[param_name].data.asnumpy().tobytes() param_data = net_dict[param_name].data.asnumpy().tobytes()
param_proto.raw_data = param_data param_proto.raw_data = param_data
else: else:
logger.error("The parameter %s in the graph are not in the network.", param_name) logger.error("The parameter %s in the graph is not in the network.", param_name)
raise ValueError("The parameter in the graph must in the network.") raise ValueError("The parameter in the graph must be in the network.")
if not file_name.endswith('.mindir'): if not file_name.endswith('.mindir'):
file_name += ".mindir" file_name += ".mindir"
current_path = os.path.abspath(file_name) current_path = os.path.abspath(file_name)
@ -968,7 +968,7 @@ def _quant_export(network, *inputs, file_format, **kwargs):
quant_mode = kwargs['quant_mode'] quant_mode = kwargs['quant_mode']
if quant_mode not in quant_mode_formats: if quant_mode not in quant_mode_formats:
raise KeyError(f'Quant_mode input is wrong, Please choose the right mode of the quant_mode.') raise KeyError(f'The quant_mode input is wrong, Please choose the right mode of the quant_mode.')
if quant_mode == 'NONQUANT': if quant_mode == 'NONQUANT':
return network return network
quant_net = copy.deepcopy(network) quant_net = copy.deepcopy(network)
@ -1049,7 +1049,7 @@ def parse_print(print_file_name):
pb_content = f.read() pb_content = f.read()
print_list.ParseFromString(pb_content) print_list.ParseFromString(pb_content)
except BaseException as e: except BaseException as e:
logger.error("Failed to read the print file %s, please check the correct of the file.", print_file_name) logger.error("Failed to read the print file %s, please check the correctness of the file.", print_file_name)
raise ValueError(e.__str__()) raise ValueError(e.__str__())
tensor_list = [] tensor_list = []