!1475 Fixing some tiny faults about Pylint in ME code

Merge pull request !1475 from liuwenhao/master
This commit is contained in:
mindspore-ci-bot 2020-05-28 10:14:22 +08:00 committed by Gitee
commit d8ea87e352
39 changed files with 115 additions and 134 deletions

View File

@ -27,8 +27,8 @@ class Net(nn.Cell):
super(Net, self).__init__()
self.add = P.TensorAdd()
def construct(self, x, y):
return self.add(x, y)
def construct(self, x_, y_):
return self.add(x_, y_)
x = np.ones([1, 3, 3, 4]).astype(np.float32)

View File

@ -31,8 +31,8 @@ class Net(nn.Cell):
# 'normal', [2, 3, 3, 4]), name='dout')
@ms_function
def construct(self, dout):
return self.bias_add_grad(dout)
def construct(self, dout_):
return self.bias_add_grad(dout_)
dout = np.ones([2, 3, 4, 4]).astype(np.float32)

View File

@ -34,8 +34,8 @@ class Net(nn.Cell):
self.get_shape = P.Shape()
@ms_function
def construct(self, x, out):
return self.conv2d_grad(out, x, self.get_shape(self.y))
def construct(self, x_, out_):
return self.conv2d_grad(out_, x_, self.get_shape(self.y))
x = Tensor(np.array([[[

View File

@ -29,9 +29,9 @@ class Net(nn.Cell):
self.mask = P.DropoutGenMask(10, 28)
self.shape = P.Shape()
def construct(self, x, y):
shape_x = self.shape(x)
return self.mask(shape_x, y)
def construct(self, x_, y_):
shape_x = self.shape(x_)
return self.mask(shape_x, y_)
x = np.ones([2, 4, 2, 2]).astype(np.int32)

View File

@ -27,8 +27,8 @@ class Net(nn.Cell):
super(Net, self).__init__()
self.equal_count = P.EqualCount()
def construct(self, x, y):
return self.equal_count(x, y)
def construct(self, x_, y_):
return self.equal_count(x_, y_)
x = np.random.randn(32).astype(np.int32)

View File

@ -29,8 +29,8 @@ class Net(nn.Cell):
self.matmul = P.MatMul()
@ms_function
def construct(self, x1, x2):
return self.matmul(x1, x2)
def construct(self, x1_, x2_):
return self.matmul(x1_, x2_)
x1 = np.random.randn(1, 3).astype(np.float32)

View File

@ -12,8 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore.common.api import ms_function

View File

@ -63,7 +63,7 @@ def test_net():
expect = loss_np
SparseSoftmaxCrossEntropyWithLogits = Net()
loss_me = SparseSoftmaxCrossEntropyWithLogits(Tensor(logits), Tensor(labels))
'''assert'''
# assert
assert np.allclose(expect.flatten(), loss_me.asnumpy().flatten(), 0.01, 0.01)
print(loss_me.asnumpy().flatten())
print("-------------------------")

View File

@ -25,8 +25,8 @@ class Net(nn.Cell):
super(Net, self).__init__()
self.add = P.TensorAdd()
def construct(self, x, y):
return self.add(x, y)
def construct(self, x_, y_):
return self.add(x_, y_)
x = np.random.randn(1, 3, 3, 4).astype(np.float32)

View File

@ -65,12 +65,10 @@ def test_conv2d_backprop_filter():
conv2d_filter = Net()
output = conv2d_filter()
print("================================")
"""
expect output:
[[[[ -60, -142, -265]
[-104, -211, -322]
[-102, -144, -248]]]]
"""
# expect output:
# [[[[ -60, -142, -265]
# [-104, -211, -322]
# [-102, -144, -248]]]]
expect = np.array([[[[-60, -142, -265],
[-104, -211, -322],
[-102, -144, -248]]]]).astype(np.float32)

View File

@ -64,15 +64,13 @@ def test_conv2d_backprop_input():
conv2d_input = Net()
output = conv2d_input()
print("================================")
"""
expect output:
[[[[ -5, -4, 5, 12, 0, -8]
[-15, -6, 17, 17, -2, -11]
[-15, -8, 13, 12, 2, -4]
[-13, -6, 8, -14, 5, 20]
[ -3, -4, -4, -19, 7, 23]
[ -3, -2, 0, -14, 3, 16]]]]
"""
# expect output:
# [[[[ -5, -4, 5, 12, 0, -8]
# [-15, -6, 17, 17, -2, -11]
# [-15, -8, 13, 12, 2, -4]
# [-13, -6, 8, -14, 5, 20]
# [ -3, -4, -4, -19, 7, 23]
# [ -3, -2, 0, -14, 3, 16]]]]
expect = np.array([[[[-5, -4, 5, 12, 0, -8],
[-15, -6, 17, 17, -2, -11],
[-15, -8, 13, 12, 2, -4],

View File

@ -59,7 +59,7 @@ def gelu_backward_cmp(input_shape):
class MEGeluLargeIn(Cell):
def __init__(self):
super(GELU, self).__init__()
super(MEGeluLargeIn, self).__init__()
self.matmul = P.MatMul()
self.gelu = P.Gelu()
@ -79,7 +79,7 @@ class GradLargeIn(Cell):
def gelu_backward_me_large_in_impl(x1, x2, output_grad):
n = GradLargeIn()
n = GELU()
grad_with_sense = GradLargeIn(n)
grad_with_sense.set_train()
input_grad = grad_with_sense(x1, x2, output_grad)

View File

@ -29,8 +29,8 @@ class Net(nn.Cell):
self.less = P.Less()
@ms_function
def construct(self, x1, x2):
return self.less(x1, x2)
def construct(self, x1_, x2_):
return self.less(x1_, x2_)
x1 = np.random.randn(3, 4).astype(np.float16)

View File

@ -29,8 +29,8 @@ class Net(nn.Cell):
self.less_equal = P.LessEqual()
@ms_function
def construct(self, x1, x2):
return self.less_equal(x1, x2)
def construct(self, x1_, x2_):
return self.less_equal(x1_, x2_)
x1 = np.random.randn(3, 4).astype(np.float16)

View File

@ -28,8 +28,8 @@ class Net(nn.Cell):
self.logical_and = P.LogicalAnd()
@ms_function
def construct(self, x1, x2):
return self.logical_and(x1, x2)
def construct(self, x1_, x2_):
return self.logical_and(x1_, x2_)
x1 = [True, True, False, False, True, True, False, False]

View File

@ -28,8 +28,8 @@ class Net(nn.Cell):
self.logical_not = P.LogicalNot()
@ms_function
def construct(self, x1):
return self.logical_not(x1)
def construct(self, x):
return self.logical_not(x)
x1 = [True, True, False, False, True, True, False, False]

View File

@ -28,8 +28,8 @@ class Net(nn.Cell):
self.logical_or = P.LogicalOr()
@ms_function
def construct(self, x1, x2):
return self.logical_or(x1, x2)
def construct(self, x1_, x2_):
return self.logical_or(x1_, x2_)
x1 = [True, True, False, False, True, True, False, False]

View File

@ -27,8 +27,8 @@ class Net(nn.Cell):
self.matmul = P.MatMul()
@ms_function
def construct(self, x1, x2):
return self.matmul(x1, x2)
def construct(self, x1_, x2_):
return self.matmul(x1_, x2_)
x1 = np.random.randn(1, 3).astype(np.float32)

View File

@ -29,8 +29,8 @@ class Net(nn.Cell):
self.matmul = P.MatMul(transpose_b=True)
@ms_function
def construct(self, x1, x2):
return self.matmul(x1, x2)
def construct(self, x1_, x2_):
return self.matmul(x1_, x2_)
x1 = np.random.randn(10, 1).astype(np.float32)

View File

@ -44,15 +44,15 @@ class GradWrap(Cell):
return gout
def gen_data(inputA_np, inputB_np, grad=None):
def gen_data(inputA_np, inputB_np, grad_=None):
inputA_me = inputA_np
if isinstance(inputA_np, np.ndarray):
inputA_me = Tensor(inputA_me)
inputB_me = inputB_np
if isinstance(inputB_np, np.ndarray):
inputB_me = Tensor(inputB_np)
if grad is None:
grad = np.random.randn(2).astype(np.float32)
if grad_ is None:
grad_ = np.random.randn(2).astype(np.float32)
print("----inputA---")
print(inputA_np)
print("----inputB---")
@ -60,7 +60,7 @@ def gen_data(inputA_np, inputB_np, grad=None):
net_me = GradWrap(MaxNetMe())
net_me.set_train()
output = net_me(inputA_me, inputB_me, Tensor(grad))
output = net_me(inputA_me, inputB_me, Tensor(grad_))
print("---me---")
print(output[0].asnumpy())
print(output[1].asnumpy())

View File

@ -44,7 +44,7 @@ class GradWrap(Cell):
return gout
def gen_data(inputA_np, inputB_np, grad=None):
def gen_data(inputA_np, inputB_np, grad_=None):
inputA_me = inputA_np
if isinstance(inputA_np, np.ndarray):
inputA_me = Tensor(inputA_me)
@ -53,12 +53,12 @@ def gen_data(inputA_np, inputB_np, grad=None):
if isinstance(inputB_np, np.ndarray):
inputB_me = Tensor(inputB_np)
if grad is None:
grad = np.random.randn(1, 3, 2, 2).astype(np.float32)
if grad_ is None:
grad_ = np.random.randn(1, 3, 2, 2).astype(np.float32)
print(inputA_np)
print(inputB_np)
print(grad)
print(grad_)
net_me = GradWrap(MinNetMe())
net_me.set_train()

View File

@ -31,8 +31,8 @@ class Grad(nn.Cell):
self.network = network
@ms_function
def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad)
def construct(self, inputValue, output_grad):
return self.grad(self.network)(inputValue, output_grad)
class Net(nn.Cell):

View File

@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import sys
import numpy as np
import mindspore.context as context
import mindspore.dataset as ds
@ -31,8 +31,8 @@ SCHEMA_DIR = "{0}/resnet_all_datasetSchema.json".format(data_path)
def test_me_de_train_dataset():
data_list = ["{0}/train-00001-of-01024.data".format(data_path)]
data_set = ds.TFRecordDataset(data_list, schema=SCHEMA_DIR,
columns_list=["image/encoded", "image/class/label"])
data_set_new = ds.TFRecordDataset(data_list, schema=SCHEMA_DIR,
columns_list=["image/encoded", "image/class/label"])
resize_height = 224
resize_width = 224
@ -42,21 +42,21 @@ def test_me_de_train_dataset():
# define map operations
decode_op = vision.Decode()
resize_op = vision.Resize(resize_height, resize_width,
resize_op = vision.Resize((resize_height, resize_width),
Inter.LINEAR) # Bilinear as default
rescale_op = vision.Rescale(rescale, shift)
# apply map operations on images
data_set = data_set.map(input_columns="image/encoded", operations=decode_op)
data_set = data_set.map(input_columns="image/encoded", operations=resize_op)
data_set = data_set.map(input_columns="image/encoded", operations=rescale_op)
data_set_new = data_set_new.map(input_columns="image/encoded", operations=decode_op)
data_set_new = data_set_new.map(input_columns="image/encoded", operations=resize_op)
data_set_new = data_set_new.map(input_columns="image/encoded", operations=rescale_op)
hwc2chw_op = vision.HWC2CHW()
data_set = data_set.map(input_columns="image/encoded", operations=hwc2chw_op)
data_set = data_set.repeat(1)
data_set_new = data_set_new.map(input_columns="image/encoded", operations=hwc2chw_op)
data_set_new = data_set_new.repeat(1)
# apply batch operations
batch_size = 32
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set
batch_size_new = 32
data_set_new = data_set_new.batch(batch_size_new, drop_remainder=True)
return data_set_new
def convert_type(shapes, types):

View File

@ -14,10 +14,10 @@
# ============================================================================
import pytest
import numpy as np
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
import numpy as np
import mindspore.context as context
from mindspore.common import dtype as mstype

View File

@ -68,12 +68,10 @@ def test_conv2d_backprop_filter():
conv2d_filter = Net4()
output = conv2d_filter()
print("================================")
"""
expect output:
[[[[ -60, -142, -265]
[-104, -211, -322]
[-102, -144, -248]]]]
"""
# expect output:
# [[[[ -60, -142, -265]
# [-104, -211, -322]
# [-102, -144, -248]]]]
expect = np.array([[[[-60, -142, -265],
[-104, -211, -322],
[-102, -144, -248]]]]).astype(np.float32)

View File

@ -66,16 +66,14 @@ class Net5(nn.Cell):
def test_conv2d_backprop_input():
conv2d_input = Net5()
output = conv2d_input()
print("================================")
"""
expect output:
[[[[ -5, -4, 5, 12, 0, -8]
[-15, -6, 17, 17, -2, -11]
[-15, -8, 13, 12, 2, -4]
[-13, -6, 8, -14, 5, 20]
[ -3, -4, -4, -19, 7, 23]
[ -3, -2, 0, -14, 3, 16]]]]
"""
print("================================")
# expect output:
# [[[[ -5, -4, 5, 12, 0, -8]
# [-15, -6, 17, 17, -2, -11]
# [-15, -8, 13, 12, 2, -4]
# [-13, -6, 8, -14, 5, 20]
# [ -3, -4, -4, -19, 7, 23]
# [ -3, -2, 0, -14, 3, 16]]]]
expect = np.array([[[[-5, -4, 5, 12, 0, -8],
[-15, -6, 17, 17, -2, -11],
[-15, -8, 13, 12, 2, -4],

View File

@ -55,16 +55,13 @@ def test_conv2d():
conv2d = NetConv2d()
output = conv2d()
print("================================")
"""
expect output:
[[[[ 45. 48. 51.]
[ 54. 57. 60.]
[ 63. 66. 69.]]
[[126. 138. 150.]
[162. 174. 186.]
[198. 210. 222.]]]]
"""
# expect output:
# [[[[ 45. 48. 51.]
# [ 54. 57. 60.]
# [ 63. 66. 69.]]
# [[126. 138. 150.]
# [162. 174. 186.]
# [198. 210. 222.]]]]
expect = np.array([[[[45, 48, 51],
[54, 57, 60],
[63, 66, 69]],

View File

@ -14,11 +14,10 @@
# ============================================================================
import pytest
import numpy as np
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.nn as nn
from mindspore.common.api import ms_function
import numpy as np
import mindspore.context as context
from mindspore.common import dtype as mstype
@ -96,7 +95,7 @@ def test_gatherv2_axisN1():
expect = np.array([[[1., 2.],
[4., 5.]],
[[7., 8.],
[10.,11.]]])
[10., 11.]]])
error = np.ones(shape=ms_output.asnumpy().shape) * 1.0e-6
diff = ms_output.asnumpy() - expect
assert np.all(diff < error)

View File

@ -65,10 +65,8 @@ def test_momentum():
print("================================")
print(losses)
"""
expect output:
[[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167
0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]]
"""
# expect output:
# [[0.04132498 0.00874167 0.00874167 0.00874167 0.00874167
# 0.00874167 0.00874167 0.00874167 0.00874167 0.00874167]]
return losses

View File

@ -41,8 +41,8 @@ def test_slice():
expect = [[[2., -2., 2.]],
[[4., -4., 4.]]]
slice = Slice()
output = slice(x)
slice_op = Slice()
output = slice_op(x)
print("output:\n", output)
assert (output.asnumpy() == expect).all()

View File

@ -13,17 +13,17 @@
# limitations under the License.
# ============================================================================
from __future__ import absolute_import
from te import tvm
from topi import generic
import te.lang.cce
from topi.cce import util
from te import tvm
from te.platform.fusion_manager import fusion_manager
from topi import generic
from topi.cce import util
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
@fusion_manager.register("add3")
def add3_compute(input1, input2, const_bias):
sum2 = te.lang.cce.vadd(input1, input2)
sum3 = te.lang.cce.vadds(sum2, tvm.const(const_bias, dtype = input1.dtype))
sum3 = te.lang.cce.vadds(sum2, tvm.const(const_bias, dtype=input1.dtype))
return sum3
@ -44,7 +44,7 @@ cus_add3_op_info = TBERegOp("CusAdd3") \
@op_info_register(cus_add3_op_info)
def CusAdd3Impl(input1, inptu2, sum, const_bias, kernel_name="CusAdd3Impl"):
def CusAdd3Impl(input1, inptu2, sum1, const_bias, kernel_name="CusAdd3Impl"):
shape = input1.get("shape")
shape = util.shape_refine(shape)
dtype = input1.get("dtype").lower()

View File

@ -12,10 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops import operations as P
from mindspore import Tensor
# sum = input1 + input2 + const_bias
class CusAdd3(PrimitiveWithInfer):

View File

@ -15,7 +15,6 @@
import numpy as np
from mindspore import Tensor
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
from mindspore.ops import operations as P
# y = x^2
class CusSquare(PrimitiveWithInfer):
@ -36,10 +35,10 @@ class CusSquare(PrimitiveWithInfer):
def infer_dtype(self, data_dtype):
return data_dtype
def get_bprop(self):
def bprop(data, out, dout):
gradient = data * 2
dx = gradient * dout
return (dx, )
return (dx,)
return bprop

View File

@ -27,8 +27,8 @@ class Net(nn.Cell):
super(Net, self).__init__()
self.select = P.Select()
def construct(self, cond, input_x, input_y):
return self.select(cond, input_x, input_y)
def construct(self, cond_op, input_x, input_y):
return self.select(cond_op, input_x, input_y)
cond = np.array([[True, False], [True, False]]).astype(np.bool)

View File

@ -315,16 +315,16 @@ test_case_array_ops = [
'desc_inputs': [Tensor(np.array([[1, 2], [3, 4]]).astype(np.float16))]}),
('SpaceToDepthNet', {
'block': SpaceToDepthNet(),
'desc_inputs': [Tensor(np.random.rand(1,3,2,2).astype(np.float16))]}),
'desc_inputs': [Tensor(np.random.rand(1, 3, 2, 2).astype(np.float16))]}),
('DepthToSpaceNet', {
'block': DepthToSpaceNet(),
'desc_inputs': [Tensor(np.random.rand(1,12,1,1).astype(np.float16))]}),
'desc_inputs': [Tensor(np.random.rand(1, 12, 1, 1).astype(np.float16))]}),
('SpaceToBatchNDNet', {
'block': SpaceToBatchNDNet(),
'desc_inputs': [Tensor(np.random.rand(1,1,2,2).astype(np.float16))]}),
'desc_inputs': [Tensor(np.random.rand(1, 1, 2, 2).astype(np.float16))]}),
('BatchToSpaceNDNet', {
'block': BatchToSpaceNDNet(),
'desc_inputs': [Tensor(np.random.rand(4,1,1,1).astype(np.float16))]}),
'desc_inputs': [Tensor(np.random.rand(4, 1, 1, 1).astype(np.float16))]}),
]
test_case_lists = [test_case_array_ops]

View File

@ -26,7 +26,7 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
class AssignAddNet(nn.Cell):
def __init__(self, ):
def __init__(self,):
super(AssignAddNet, self).__init__()
self.op = P.AssignAdd()
self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_add1")
@ -37,7 +37,7 @@ class AssignAddNet(nn.Cell):
class AssignSubNet(nn.Cell):
def __init__(self, ):
def __init__(self,):
super(AssignSubNet, self).__init__()
self.op = P.AssignSub()
self.inputdata = Parameter(Tensor(np.zeros([1]).astype(np.bool_), mstype.bool_), name="assign_sub1")

View File

@ -13,8 +13,8 @@
# limitations under the License.
# ============================================================================
"""multitype_ops directory test case"""
import numpy as np
from functools import partial, reduce
import numpy as np
import mindspore.nn as nn
import mindspore.context as context

View File

@ -231,7 +231,7 @@ class ApplyRMSNet(nn.Cell):
self.apply_rms = P.ApplyRMSProp()
self.lr = 0.001
self.rho = 0.0
self.momentum= 0.0
self.momentum = 0.0
self.epsilon = 1e-10
self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
self.ms = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="ms")
@ -574,7 +574,8 @@ test_case_math_ops = [
('CumSum', {
'block': CumSumNet(),
'desc_inputs': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))],
'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))]}),
'desc_bprop': [Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7],
[1, 3, 7, 9]]).astype(np.float32))]}),
('ReduceSum_3', {
'block': P.ReduceSum(),
'desc_const': [0],

View File

@ -103,7 +103,7 @@ test_case_reid_ops = [
'desc_bprop': [[128, 64, 112, 112]]}),
('PRelu', {
'block': P.PReLU(),
'desc_inputs': [[128, 64, 112, 112], [64, ]],
'desc_inputs': [[128, 64, 112, 112], [64,]],
'desc_bprop': [[128, 64, 112, 112]]}),
('Cos', {
'block': P.Cos(),
@ -155,11 +155,11 @@ test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
test_exec_case = filter(lambda x: 'skip' not in x[1] or
'exec' not in x[1]['skip'], test_case)
'exec' not in x[1]['skip'], test_case)
test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
'backward' not in x[1]['skip'] and 'backward_exec'
not in x[1]['skip'], test_case)
'backward' not in x[1]['skip'] and 'backward_exec'
not in x[1]['skip'], test_case)
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)