forked from mindspore-Ecosystem/mindspore
!24591 Debug Timeout
Merge pull request !24591 from zuochuanyong/debug_cpu_timeout
This commit is contained in:
commit
d7e89198d1
|
@ -0,0 +1,92 @@
|
||||||
|
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""unit tests for numpy array operations"""
|
||||||
|
|
||||||
|
import numpy as onp
|
||||||
|
import mindspore.numpy as mnp
|
||||||
|
from .utils import match_all_arrays, to_tensor
|
||||||
|
|
||||||
|
|
||||||
|
def test_pad_inner():
|
||||||
|
x_np = onp.random.random([2, 3, 4]).astype("float32")
|
||||||
|
x_ms = mnp.asarray(x_np.tolist())
|
||||||
|
|
||||||
|
# pad constant
|
||||||
|
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)))
|
||||||
|
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)))
|
||||||
|
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
||||||
|
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 3), (4, 5)), constant_values=((3, 4), (5, 6), (7, 8)))
|
||||||
|
onp_res = onp.pad(x_np, ((1, 1), (2, 3), (4, 5)), constant_values=((3, 4), (5, 6), (7, 8)))
|
||||||
|
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
||||||
|
|
||||||
|
# pad statistic
|
||||||
|
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)), mode="mean", stat_length=((1, 2), (2, 10), (3, 4)))
|
||||||
|
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)), mode="mean", stat_length=((1, 2), (2, 10), (3, 4)))
|
||||||
|
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
||||||
|
|
||||||
|
# pad edge
|
||||||
|
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)), mode="edge")
|
||||||
|
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)), mode="edge")
|
||||||
|
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
||||||
|
|
||||||
|
# pad wrap
|
||||||
|
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)), mode="wrap")
|
||||||
|
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)), mode="wrap")
|
||||||
|
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
||||||
|
|
||||||
|
# pad linear_ramp
|
||||||
|
mnp_res = mnp.pad(x_ms, ((1, 3), (5, 2), (3, 0)), mode="linear_ramp", end_values=((0, 10), (9, 1), (-10, 99)))
|
||||||
|
onp_res = onp.pad(x_np, ((1, 3), (5, 2), (3, 0)), mode="linear_ramp", end_values=((0, 10), (9, 1), (-10, 99)))
|
||||||
|
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
||||||
|
|
||||||
|
|
||||||
|
def mnp_logaddexp(x1, x2):
|
||||||
|
return mnp.logaddexp(x1, x2)
|
||||||
|
|
||||||
|
|
||||||
|
def onp_logaddexp(x1, x2):
|
||||||
|
return onp.logaddexp(x1, x2)
|
||||||
|
|
||||||
|
def mnp_logaddexp2(x1, x2):
|
||||||
|
return mnp.logaddexp2(x1, x2)
|
||||||
|
|
||||||
|
|
||||||
|
def onp_logaddexp2(x1, x2):
|
||||||
|
return onp.logaddexp2(x1, x2)
|
||||||
|
|
||||||
|
|
||||||
|
def test_logaddexp_inner():
|
||||||
|
test_cases = [
|
||||||
|
onp.random.randint(1, 5, (5, 6, 3, 2)).astype('float16')]
|
||||||
|
for _, x1 in enumerate(test_cases):
|
||||||
|
for _, x2 in enumerate(test_cases):
|
||||||
|
expected = onp_logaddexp(x1, x2)
|
||||||
|
actual = mnp_logaddexp(to_tensor(x1), to_tensor(x2))
|
||||||
|
onp.testing.assert_almost_equal(actual.asnumpy().tolist(), expected.tolist(),
|
||||||
|
decimal=2)
|
||||||
|
|
||||||
|
|
||||||
|
def test_logaddexp2_inner():
|
||||||
|
test_cases = [
|
||||||
|
onp.random.randint(1, 5, (2)).astype('float16'),
|
||||||
|
onp.random.randint(1, 5, (3, 2)).astype('float16'),
|
||||||
|
onp.random.randint(1, 5, (1, 3, 2)).astype('float16'),
|
||||||
|
onp.random.randint(1, 5, (5, 6, 3, 2)).astype('float16')]
|
||||||
|
for _, x1 in enumerate(test_cases):
|
||||||
|
for _, x2 in enumerate(test_cases):
|
||||||
|
expected = onp_logaddexp2(x1, x2)
|
||||||
|
actual = mnp_logaddexp2(to_tensor(x1), to_tensor(x2))
|
||||||
|
onp.testing.assert_almost_equal(actual.asnumpy().tolist(), expected.tolist(),
|
||||||
|
decimal=2)
|
|
@ -14,9 +14,9 @@
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""unit tests for numpy array operations"""
|
"""unit tests for numpy array operations"""
|
||||||
|
|
||||||
|
import os
|
||||||
import pytest
|
import pytest
|
||||||
import numpy as onp
|
import numpy as onp
|
||||||
|
|
||||||
import mindspore.numpy as mnp
|
import mindspore.numpy as mnp
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
|
|
||||||
|
@ -935,36 +935,9 @@ def test_empty_like_exception():
|
||||||
@pytest.mark.platform_x86_cpu
|
@pytest.mark.platform_x86_cpu
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_pad():
|
def test_pad():
|
||||||
x_np = onp.random.random([2, 3, 4]).astype("float32")
|
os.putenv('GLOG_v', '0')
|
||||||
x_ms = mnp.asarray(x_np.tolist())
|
ret = os.system('pytest -s ./debug.py::test_pad_inner --disable-warnings')
|
||||||
|
assert ret == 0
|
||||||
# pad constant
|
|
||||||
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)))
|
|
||||||
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)))
|
|
||||||
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
|
||||||
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 3), (4, 5)), constant_values=((3, 4), (5, 6), (7, 8)))
|
|
||||||
onp_res = onp.pad(x_np, ((1, 1), (2, 3), (4, 5)), constant_values=((3, 4), (5, 6), (7, 8)))
|
|
||||||
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
|
||||||
|
|
||||||
# pad statistic
|
|
||||||
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)), mode="mean", stat_length=((1, 2), (2, 10), (3, 4)))
|
|
||||||
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)), mode="mean", stat_length=((1, 2), (2, 10), (3, 4)))
|
|
||||||
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
|
||||||
|
|
||||||
# pad edge
|
|
||||||
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)), mode="edge")
|
|
||||||
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)), mode="edge")
|
|
||||||
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
|
||||||
|
|
||||||
# pad wrap
|
|
||||||
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)), mode="wrap")
|
|
||||||
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)), mode="wrap")
|
|
||||||
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
|
||||||
|
|
||||||
# pad linear_ramp
|
|
||||||
mnp_res = mnp.pad(x_ms, ((1, 3), (5, 2), (3, 0)), mode="linear_ramp", end_values=((0, 10), (9, 1), (-10, 99)))
|
|
||||||
onp_res = onp.pad(x_np, ((1, 3), (5, 2), (3, 0)), mode="linear_ramp", end_values=((0, 10), (9, 1), (-10, 99)))
|
|
||||||
match_all_arrays(mnp_res, onp_res, error=1e-5)
|
|
||||||
|
|
||||||
|
|
||||||
def pad_with_msfunc(vector, pad_width, iaxis, kwargs):
|
def pad_with_msfunc(vector, pad_width, iaxis, kwargs):
|
||||||
|
|
|
@ -14,9 +14,9 @@
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""unit tests for numpy math operations"""
|
"""unit tests for numpy math operations"""
|
||||||
|
|
||||||
|
import os
|
||||||
import pytest
|
import pytest
|
||||||
import numpy as onp
|
import numpy as onp
|
||||||
|
|
||||||
import mindspore.numpy as mnp
|
import mindspore.numpy as mnp
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
from mindspore.common.dtype import dtype_to_nptype
|
from mindspore.common.dtype import dtype_to_nptype
|
||||||
|
@ -823,14 +823,6 @@ def test_log1p():
|
||||||
run_unary_test(mnp_log1p, onp_log1p, test_case, error=1e-5)
|
run_unary_test(mnp_log1p, onp_log1p, test_case, error=1e-5)
|
||||||
|
|
||||||
|
|
||||||
def mnp_logaddexp(x1, x2):
|
|
||||||
return mnp.logaddexp(x1, x2)
|
|
||||||
|
|
||||||
|
|
||||||
def onp_logaddexp(x1, x2):
|
|
||||||
return onp.logaddexp(x1, x2)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level0
|
@pytest.mark.level0
|
||||||
@pytest.mark.platform_arm_ascend_training
|
@pytest.mark.platform_arm_ascend_training
|
||||||
@pytest.mark.platform_x86_ascend_training
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@ -838,14 +830,9 @@ def onp_logaddexp(x1, x2):
|
||||||
@pytest.mark.platform_x86_cpu
|
@pytest.mark.platform_x86_cpu
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_logaddexp():
|
def test_logaddexp():
|
||||||
test_cases = [
|
os.putenv('GLOG_v', '0')
|
||||||
onp.random.randint(1, 5, (5, 6, 3, 2)).astype('float16')]
|
ret = os.system('pytest -s ./debug.py::test_logaddexp_inner --disable-warnings')
|
||||||
for _, x1 in enumerate(test_cases):
|
assert ret == 0
|
||||||
for _, x2 in enumerate(test_cases):
|
|
||||||
expected = onp_logaddexp(x1, x2)
|
|
||||||
actual = mnp_logaddexp(to_tensor(x1), to_tensor(x2))
|
|
||||||
onp.testing.assert_almost_equal(actual.asnumpy().tolist(), expected.tolist(),
|
|
||||||
decimal=2)
|
|
||||||
|
|
||||||
|
|
||||||
def mnp_log2(x):
|
def mnp_log2(x):
|
||||||
|
@ -866,14 +853,6 @@ def test_log2():
|
||||||
run_unary_test(mnp_log2, onp_log2, test_case, error=1e-5)
|
run_unary_test(mnp_log2, onp_log2, test_case, error=1e-5)
|
||||||
|
|
||||||
|
|
||||||
def mnp_logaddexp2(x1, x2):
|
|
||||||
return mnp.logaddexp2(x1, x2)
|
|
||||||
|
|
||||||
|
|
||||||
def onp_logaddexp2(x1, x2):
|
|
||||||
return onp.logaddexp2(x1, x2)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.level1
|
@pytest.mark.level1
|
||||||
@pytest.mark.platform_arm_ascend_training
|
@pytest.mark.platform_arm_ascend_training
|
||||||
@pytest.mark.platform_x86_ascend_training
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@ -881,17 +860,9 @@ def onp_logaddexp2(x1, x2):
|
||||||
@pytest.mark.platform_x86_cpu
|
@pytest.mark.platform_x86_cpu
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_logaddexp2():
|
def test_logaddexp2():
|
||||||
test_cases = [
|
os.putenv('GLOG_v', '0')
|
||||||
onp.random.randint(1, 5, (2)).astype('float16'),
|
ret = os.system('pytest -s ./debug.py::test_logaddexp2_inner --disable-warnings')
|
||||||
onp.random.randint(1, 5, (3, 2)).astype('float16'),
|
assert ret == 0
|
||||||
onp.random.randint(1, 5, (1, 3, 2)).astype('float16'),
|
|
||||||
onp.random.randint(1, 5, (5, 6, 3, 2)).astype('float16')]
|
|
||||||
for _, x1 in enumerate(test_cases):
|
|
||||||
for _, x2 in enumerate(test_cases):
|
|
||||||
expected = onp_logaddexp2(x1, x2)
|
|
||||||
actual = mnp_logaddexp2(to_tensor(x1), to_tensor(x2))
|
|
||||||
onp.testing.assert_almost_equal(actual.asnumpy().tolist(), expected.tolist(),
|
|
||||||
decimal=2)
|
|
||||||
|
|
||||||
|
|
||||||
def mnp_log10(x):
|
def mnp_log10(x):
|
||||||
|
|
Loading…
Reference in New Issue