!7120 optimize include interface & optimize converter/benchmark/time_profiler interface

Merge pull request !7120 from hangq/xay
This commit is contained in:
mindspore-ci-bot 2020-10-12 15:45:27 +08:00 committed by Gitee
commit d7b4a0d611
45 changed files with 453 additions and 1086 deletions

View File

@ -228,7 +228,6 @@ add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/nnacl)
if (NOT WIN32)
if (ENABLE_TOOLS)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/tools/benchmark)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/tools/time_profiler)
endif()
if (BUILD_TESTCASES)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/test)

View File

@ -20,18 +20,14 @@
#include <string>
#include <memory>
#include "include/ms_tensor.h"
#include "include/lite_utils.h"
namespace mindspore::lite {
/// \brief Allocator defined a memory pool for malloc memory and free memory dynamically.
///
/// \note List public class and interface for reference.
class Allocator;
/// \brief CpuBindMode defined for holding bind cpu strategy argument.
typedef enum {
MID_CPU = -1, /**< bind middle cpu first */
NO_BIND = 0, /**< no bind */
HIGHER_CPU = 1, /**< bind higher cpu first */
NO_BIND = 0 /**< no bind */
MID_CPU = 2 /**< bind middle cpu first */
} CpuBindMode;
/// \brief DeviceType defined for holding user's preferred backend.
@ -43,10 +39,10 @@ typedef enum {
/// \brief Context defined for holding environment variables during runtime.
struct Context {
bool float16_priority = false; /**< prior enable float16 inference */
bool enable_float16_ = false; /**< prior enable float16 inference */
DeviceType device_type_ = DT_CPU;
int thread_num_ = 2; /**< thread number config for thread pool */
std::shared_ptr<Allocator> allocator = nullptr;
AllocatorPtr allocator = nullptr;
CpuBindMode cpu_bind_mode_ = MID_CPU;
};
} // namespace mindspore::lite

View File

@ -25,7 +25,7 @@ using STATUS = int;
/* Success */
constexpr int RET_OK = 0; /**< No error occurs. */
/* Common error code, range: [-1, -100]*/
/* Common error code, range: [-1, -100*/
constexpr int RET_ERROR = -1; /**< Common error code. */
constexpr int RET_NULL_PTR = -2; /**< NULL pointer returned.*/
constexpr int RET_PARAM_INVALID = -3; /**< Invalid parameter.*/
@ -34,30 +34,29 @@ constexpr int RET_SUCCESS_EXIT = -5; /**< No error but exit. */
constexpr int RET_MEMORY_FAILED = -6; /**< Fail to create memory. */
constexpr int RET_NOT_SUPPORT = -7; /**< Fail to support. */
/* Executor error code, range: [-101,-200] */
constexpr int RET_OUT_OF_TENSOR_RANGE = -101; /**< Failed to check range. */
constexpr int RET_INPUT_TENSOR_ERROR = -102; /**< Failed to check input tensor. */
constexpr int RET_REENTRANT_ERROR = -103; /**< Exist executor running. */
/* Executor error code, range: [-100,-200) */
constexpr int RET_OUT_OF_TENSOR_RANGE = -100; /**< Failed to check range. */
constexpr int RET_INPUT_TENSOR_ERROR = -101; /**< Failed to check input tensor. */
constexpr int RET_REENTRANT_ERROR = -102; /**< Exist executor running. */
/* Graph error code, range: [-201,-300] */
constexpr int RET_GRAPH_FILE_ERR = -201; /**< Failed to verify graph file. */
/* Graph error code, range: [-200,-300) */
constexpr int RET_GRAPH_FILE_ERR = -200; /**< Failed to verify graph file. */
/* Node error code, range: [-301,-400] */
constexpr int RET_NOT_FIND_OP = -301; /**< Failed to find operator. */
constexpr int RET_INVALID_OP_NAME = -302; /**< Invalid operator name. */
constexpr int RET_INVALID_OP_ATTR = -303; /**< Invalid operator attr. */
constexpr int RET_OP_EXECUTE_FAILURE = -304; /**< Failed to execution operator. */
/* Node error code, range: [-300,-400) */
constexpr int RET_NOT_FIND_OP = -300; /**< Failed to find operator. */
constexpr int RET_INVALID_OP_NAME = -301; /**< Invalid operator name. */
constexpr int RET_INVALID_OP_ATTR = -302; /**< Invalid operator attr. */
constexpr int RET_OP_EXECUTE_FAILURE = -303; /**< Failed to execution operator. */
/* Tensor error code, range: [-401,-500] */
constexpr int RET_FORMAT_ERR = -401; /**< Failed to checking tensor format. */
/* Tensor error code, range: [-400,-500) */
constexpr int RET_FORMAT_ERR = -400; /**< Failed to checking tensor format. */
/* InferShape error code, range: [-501,-600] */
constexpr int RET_INFER_ERR = -501; /**< Failed to infer shape. */
constexpr int RET_INFER_INVALID = -502; /**< Invalid infer shape before runtime. */
/* InferShape error code, range: [-500,-600) */
constexpr int RET_INFER_ERR = -500; /**< Failed to infer shape. */
constexpr int RET_INFER_INVALID = -501; /**< Invalid infer shape before runtime. */
/* User input param error code, range: [-601, 700]*/
constexpr int RET_INPUT_PARAM_INVALID = -601; /**< Invalid input param by user. */
constexpr int RET_INPUT_PARAM_LACK = -602; /**< LACK input param by user. */
/* User input param error code, range: [-600, 700)*/
constexpr int RET_INPUT_PARAM_INVALID = -600; /**< Invalid input param by user. */
} // namespace lite
} // namespace mindspore

View File

@ -29,8 +29,8 @@ namespace mindspore {
namespace session {
/// \brief CallBackParam defined input arguments for callBack function.
struct CallBackParam {
std::string name_callback_param; /**< node name argument */
std::string type_callback_param; /**< node type argument */
std::string node_name; /**< node name argument */
std::string node_type; /**< node type argument */
};
/// \brief KernelCallBack defined the function pointer for callBack.
@ -69,12 +69,12 @@ class MS_API LiteSession {
/// \return The vector of MindSpore Lite MSTensor.
virtual std::vector<tensor::MSTensor *> GetInputs() const = 0;
/// \brief Get input MindSpore Lite MSTensors of model by node name.
/// \brief Get input MindSpore Lite MSTensors of model by tensor name.
///
/// \param[in] node_name Define node name.
/// \param[in] node_name Define tensor name.
///
/// \return The vector of MindSpore Lite MSTensor.
virtual std::vector<tensor::MSTensor *> GetInputsByName(const std::string &node_name) const = 0;
virtual mindspore::tensor::MSTensor *GetInputsByTensorName(const std::string &tensor_name) const = 0;
/// \brief Run session with callback.
///
@ -90,8 +90,9 @@ class MS_API LiteSession {
///
/// \param[in] node_name Define node name.
///
/// \note Deprecated, replace with GetOutputByTensorName
///
/// \return The vector of MindSpore Lite MSTensor.
/// deprecated, replace with GetOutputByTensorName
virtual std::vector<tensor::MSTensor *> GetOutputsByNodeName(const std::string &node_name) const = 0;
/// \brief Get output MindSpore Lite MSTensors of model mapped by tensor name.
@ -117,7 +118,7 @@ class MS_API LiteSession {
/// \param[in] dims Define the inputs new shape.
///
/// \return STATUS as an error code of resize inputs, STATUS is defined in errorcode.h.
virtual int Resize(const std::vector<tensor::MSTensor *> &inputs, const std::vector<std::vector<int>>& dims) = 0;
virtual int Resize(const std::vector<tensor::MSTensor *> &inputs, const std::vector<std::vector<int>> &dims) = 0;
};
} // namespace session
} // namespace mindspore

View File

@ -18,12 +18,19 @@
#define MINDSPORE_LITE_INCLUDE_LITE_UTILS_H_
#include <vector>
#include <string>
#include <memory>
#include "schema/model_generated.h"
namespace mindspore::lite {
/// \brief Allocator defined a memory pool for malloc memory and free memory dynamically.
///
/// \note List public class and interface for reference.
class Allocator;
using TensorPtrVector = std::vector<mindspore::schema::Tensor *>;
using Uint32Vector = std::vector<uint32_t>;
using String = std::string;
using NodeType = schema::NodeType;
using AllocatorPtr = std::shared_ptr<Allocator>;
} // namespace mindspore::lite
#endif // MINDSPORE_LITE_INCLUDE_LITE_UTILS_H_

View File

@ -18,11 +18,11 @@
#define MINDSPORE_LITE_SRC_LITE_KERNEL_H_
#include <vector>
#include <string>
#include "src/ops/primitive_c.h"
#include "src/common/utils.h"
#ifdef ENABLE_ARM
#include <arm_neon.h>
#endif
#include "src/ops/primitive_c.h"
#include "nnacl/op_base.h"
#include "src/inner_context.h"
#include "src/tensor.h"

View File

@ -176,7 +176,8 @@ void LiteSession::InitGraphInputMap(const lite::Model *model) {
MS_LOG(ERROR) << "in_tensor is null!";
return;
}
this->input_map_[in_node->name_].emplace_back(in_tensor);
auto tensor_name = in_node->name_ + std::to_string(i);
this->input_map_[tensor_name] = in_tensor;
}
}
}
@ -315,6 +316,19 @@ int LiteSession::Init(Context *context) {
}
MS_ASSERT(nullptr != context);
if (context->device_type_ == DT_NPU) {
MS_LOG(ERROR) << "NPU is not supported.";
is_running_.store(false);
return RET_NOT_SUPPORT;
}
#ifndef SUPPORT_GPU
if (context->device_type_ == DT_GPU) {
MS_LOG(ERROR) << "GPU is not supported.";
is_running_.store(false);
return RET_NOT_SUPPORT;
}
#endif
this->context_ = new (std::nothrow) InnerContext();
if (this->context_ == nullptr) {
MS_LOG(ERROR) << "New Context failed";
@ -325,7 +339,7 @@ int LiteSession::Init(Context *context) {
this->context_->thread_num_ = context->thread_num_;
this->context_->cpu_bind_mode_ = context->cpu_bind_mode_;
this->context_->device_type_ = context->device_type_;
this->context_->float16_priority = context->float16_priority;
this->context_->enable_float16_ = context->enable_float16_;
auto ret = this->context_->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init Context failed";
@ -341,7 +355,7 @@ int LiteSession::Init(Context *context) {
#if SUPPORT_GPU
if (context_->device_type_ == DT_GPU) {
auto opencl_runtime = ocl_runtime_wrap_.GetInstance();
opencl_runtime->SetFp16Enable(context_->float16_priority);
opencl_runtime->SetFp16Enable(context_->enable_float16_);
if (opencl_runtime->Init() != RET_OK) {
context_->device_type_ = DT_CPU;
MS_LOG(WARNING) << "Init OpenCL runtime failed, change to CPU mode.";
@ -397,12 +411,11 @@ LiteSession::~LiteSession() {
is_running_.store(false);
}
std::vector<mindspore::tensor::MSTensor *> LiteSession::GetInputsByName(const std::string &name) const {
mindspore::tensor::MSTensor *LiteSession::GetInputsByTensorName(const std::string &name) const {
auto ret = input_map_.find(name);
if (ret == input_map_.end()) {
MS_LOG(WARNING) << "Node " << name << " is not an input node";
std::vector<mindspore::tensor::MSTensor *> empty_ret;
return empty_ret;
MS_LOG(WARNING) << "Tensor " << name << " is not exist";
return nullptr;
}
return ret->second;
}

View File

@ -50,7 +50,7 @@ class LiteSession : public session::LiteSession {
std::vector<mindspore::tensor::MSTensor *> GetInputs() const override;
std::vector<mindspore::tensor::MSTensor *> GetInputsByName(const std::string &name) const override;
mindspore::tensor::MSTensor *GetInputsByTensorName(const std::string &name) const override;
int RunGraph(const session::KernelCallBack &before = nullptr,
const session::KernelCallBack &after = nullptr) override;
@ -101,8 +101,8 @@ class LiteSession : public session::LiteSession {
std::vector<Tensor *> outputs_;
// graph input MSTensors
std::vector<mindspore::tensor::MSTensor *> input_vec_;
// graph input node name -- input tensors
std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>> input_map_;
// graph input tensor name -- input tensors
std::unordered_map<std::string, mindspore::tensor::MSTensor *> input_map_;
// graph output node name -- output tensors
std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>> output_node_map_;

View File

@ -27,7 +27,6 @@
#else
#include "schema/model_generated.h"
#endif
#include "src/tensor.h"
#include "include/errorcode.h"
#include "src/common/log_adapter.h"

View File

@ -137,9 +137,9 @@ int FullconnectionCPUKernel::Run() {
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
return prepare_ret;
}
auto a_ptr = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData());
auto b_ptr = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData());
c_r_ptr = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
auto a_ptr = reinterpret_cast<float *>(in_tensors_.at(0)->data_c());
auto b_ptr = reinterpret_cast<float *>(in_tensors_.at(1)->data_c());
c_r_ptr = reinterpret_cast<float *>(out_tensors_.at(0)->data_c());
if (!fc_param_->a_const_) InitMatrixA(a_ptr, a_c12_ptr_);
if (!fc_param_->b_const_) InitMatrixB(b_ptr, b_r8_ptr_);

View File

@ -18,10 +18,10 @@
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_FULLCONNECTION_H_
#include <vector>
#include "src/runtime/kernel/arm/base/fullconnection_base.h"
#include "include/errorcode.h"
#include "include/context.h"
#include "nnacl/fp32/matmul.h"
#include "src/runtime/kernel/arm/base/fullconnection_base.h"
using mindspore::lite::InnerContext;

View File

@ -18,8 +18,8 @@
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_RESHAPE_H_
#include <vector>
#include "include/context.h"
#include "src/lite_kernel.h"
#include "include/context.h"
#include "nnacl/l2_norm_parameter.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"

View File

@ -18,8 +18,8 @@
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_POWER_H_
#include <vector>
#include "include/context.h"
#include "src/lite_kernel.h"
#include "include/context.h"
#include "nnacl/power.h"
#include "src/runtime/kernel/arm/base/power_base.h"

View File

@ -18,9 +18,9 @@
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_FULLCONNECTION_INT8_H_
#include <vector>
#include "src/runtime/kernel/arm/base/fullconnection_base.h"
#include "include/context.h"
#include "nnacl/quantization/quantize.h"
#include "src/runtime/kernel/arm/base/fullconnection_base.h"
#include "nnacl/int8/common_func.h"
using mindspore::lite::InnerContext;

View File

@ -18,9 +18,9 @@
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_MATMUL_INT8_H_
#include <vector>
#include "src/runtime/kernel/arm/base/matmul_base.h"
#include "include/context.h"
#include "nnacl/quantization/quantize.h"
#include "src/runtime/kernel/arm/base/matmul_base.h"
using mindspore::lite::InnerContext;

View File

@ -30,7 +30,7 @@ int OpenCLExecutor::Run(std::vector<Tensor *> &inputs, std::vector<Tensor *> &ou
for (auto *kernel : kernels) {
MS_ASSERT(nullptr != kernel);
session::CallBackParam callbackParam;
callbackParam.name_callback_param = kernel->name();
callbackParam.node_name = kernel->name();
if (before != nullptr) {
if (!before(TensorVectorCast(kernel->in_tensors()), TensorVectorCast(kernel->out_tensors()), callbackParam)) {

View File

@ -195,7 +195,7 @@ void Scheduler::ConstructSubgraphs(std::vector<kernel::LiteKernel *> *kernels) {
for (auto temp_kernels : sub_kernels_list) {
std::vector<Tensor *> output_tensor = kernel::LiteKernelUtil::SubgraphOutputTensors(temp_kernels);
for (auto tensor : output_tensor) {
if (context_->float16_priority && tensor->data_type() == kNumberTypeFloat16) {
if (context_->enable_float16_ && tensor->data_type() == kNumberTypeFloat16) {
tensor->set_data_type(kNumberTypeFloat32);
}
}
@ -262,7 +262,7 @@ kernel::LiteKernel *Scheduler::ScheduleNode(const std::vector<Tensor *> &in_tens
#endif
desc.arch = kernel::KERNEL_ARCH::kCPU;
kernel::LiteKernel *kernel = nullptr;
if ((context_->float16_priority && data_type == kNumberTypeFloat32) || data_type == kNumberTypeFloat16) {
if ((context_->enable_float16_ && data_type == kNumberTypeFloat32) || data_type == kNumberTypeFloat16) {
// check if support fp16
kernel::KernelKey key{desc.arch, kNumberTypeFloat16, desc.type};
kernel = KernelRegistry::GetInstance()->GetKernel(in_tensors, out_tensors, primitive, context_, key);

View File

@ -106,7 +106,7 @@ function Run_Converter() {
echo ${model_name} >> "${run_converter_log_file}"
echo 'convert mode name: '${model_name}' begin.'
echo './converter_lite --fmk=TFLITE --modelFile='${models_path}'/'${model_name}' --outputFile='${ms_models_path}'/'${model_name}_posttraining' --quantType=PostTraining --config_file='${models_path}'/'${model_name}'_posttraining.config' >> "${run_converter_log_file}"
./converter_lite --fmk=TFLITE --modelFile=$models_path/${model_name} --outputFile=${ms_models_path}/${model_name}_posttraining --quantType=PostTraining --config_file=${models_path}/${model_name}_posttraining.config
./converter_lite --fmk=TFLITE --modelFile=$models_path/${model_name} --outputFile=${ms_models_path}/${model_name}_posttraining --quantType=PostTraining --configFile=${models_path}/${model_name}_posttraining.config
if [ $? = 0 ]; then
converter_result='converter post_training '${model_name}' pass';echo ${converter_result} >> ${run_converter_result_file}
else
@ -152,8 +152,8 @@ function Run_Converter() {
continue
fi
echo ${model_name} >> "${run_converter_log_file}"
echo './converter_lite --fmk=TFLITE --modelFile='${models_path}'/'${model_name}' --outputFile='${ms_models_path}'/'${model_name}'--quantType=WeightQuant --bitNum=8 --quantSize=500 --convWeightQuantChannelThreshold=16' >> "${run_converter_log_file}"
./converter_lite --fmk=TFLITE --modelFile=$models_path/${model_name} --outputFile=${ms_models_path}/${model_name}_weightquant --quantType=WeightQuant --bitNum=8 --quantSize=500 --convWeightQuantChannelThreshold=16
echo './converter_lite --fmk=TFLITE --modelFile='${models_path}'/'${model_name}' --outputFile='${ms_models_path}'/'${model_name}'--quantType=WeightQuant --bitNum=8 --quantWeightSize=500 --quantWeightChannel=16' >> "${run_converter_log_file}"
./converter_lite --fmk=TFLITE --modelFile=$models_path/${model_name} --outputFile=${ms_models_path}/${model_name}_weightquant --quantType=WeightQuant --bitNum=8 --quantWeightSize=500 --quantWeightChannel=16
if [ $? = 0 ]; then
converter_result='converter weight_quant '${model_name}' pass';echo ${converter_result} >> ${run_converter_result_file}
else
@ -173,8 +173,8 @@ function Run_x86() {
echo ${model_name} >> "${run_x86_log_file}"
echo 'cd '${x86_path}'/mindspore-lite-'${version}'-runtime-x86-'${process_unit_x86} >> "{run_x86_log_file}"
cd ${x86_path}/mindspore-lite-${version}-runtime-x86-${process_unit_x86} || return 1
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath='${ms_models_path}'/'${model_name}'.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath=${ms_models_path}/${model_name}.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile='${ms_models_path}'/'${model_name}'.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile=${ms_models_path}/${model_name}.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
if [ $? = 0 ]; then
run_result='x86: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
else
@ -191,8 +191,8 @@ function Run_x86() {
echo ${model_name} >> "${run_x86_log_file}"
echo 'cd '${x86_path}'/mindspore-lite-'${version}'-runtime-x86-'${process_unit_x86} >> "${run_x86_log_file}"
cd ${x86_path}/mindspore-lite-${version}-runtime-x86-${process_unit_x86} || return 1
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath='${ms_models_path}'/'${model_name}'.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath=${ms_models_path}/${model_name}.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile='${ms_models_path}'/'${model_name}'.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile=${ms_models_path}/${model_name}.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
if [ $? = 0 ]; then
run_result='x86: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
else
@ -209,8 +209,8 @@ function Run_x86() {
echo ${model_name} >> "${run_x86_log_file}"
echo 'cd '${x86_path}'/mindspore-lite-'${version}'-runtime-x86-'${process_unit_x86} >> "${run_x86_log_file}"
cd ${x86_path}/mindspore-lite-${version}-runtime-x86-${process_unit_x86} || return 1
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath='${ms_models_path}'/'${model_name}'.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath=${ms_models_path}/${model_name}.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile='${ms_models_path}'/'${model_name}'.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile=${ms_models_path}/${model_name}.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
if [ $? = 0 ]; then
run_result='x86: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
else
@ -227,8 +227,8 @@ function Run_x86() {
echo ${model_name} >> "${run_x86_log_file}"
echo 'cd '${x86_path}'/mindspore-lite-'${version}'-runtime-x86-'${process_unit_x86} >> "${run_x86_log_file}"
cd ${x86_path}/mindspore-lite-${version}-runtime-x86-${process_unit_x86} || return 1
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath='${ms_models_path}'/'${model_name}'_posttraining.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/quantTraining/mnist_calibration_data/00099.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'_posttraining.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath=${ms_models_path}/${model_name}_posttraining.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/quantTraining/mnist_calibration_data/00099.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}_posttraining.ms.out >> "${run_x86_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile='${ms_models_path}'/'${model_name}'_posttraining.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/quantTraining/mnist_calibration_data/00099.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'_posttraining.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile=${ms_models_path}/${model_name}_posttraining.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/quantTraining/mnist_calibration_data/00099.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}_posttraining.ms.out >> "${run_x86_log_file}"
if [ $? = 0 ]; then
run_result='x86: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
else
@ -245,8 +245,8 @@ function Run_x86() {
echo ${model_name} >> "${run_x86_log_file}"
echo 'cd '${x86_path}'/mindspore-lite-'${version}'-runtime-x86-'${process_unit_x86} >> "${run_x86_log_file}"
cd ${x86_path}/mindspore-lite-${version}-runtime-x86-${process_unit_x86} || return 1
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath='${ms_models_path}'/'${model_name}'.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath=${ms_models_path}/${model_name}.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile='${ms_models_path}'/'${model_name}'.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile=${ms_models_path}/${model_name}.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
if [ $? = 0 ]; then
run_result='x86: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
else
@ -263,8 +263,8 @@ function Run_x86() {
echo ${model_name}'_train' >> "${run_x86_log_file}"
echo 'cd '${x86_path}'/mindspore-lite-'${version}'-runtime-x86-'${process_unit_x86} >> "${run_x86_log_file}"
cd ${x86_path}/mindspore-lite-${version}-runtime-x86-${process_unit_x86} || return 1
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath='${ms_models_path}'/'${model_name}'_train.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath=${ms_models_path}/${model_name}'_train'.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out --accuracyThreshold=1.5 >> "${run_x86_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile='${ms_models_path}'/'${model_name}'_train.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile=${ms_models_path}/${model_name}'_train'.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out --accuracyThreshold=1.5 >> "${run_x86_log_file}"
if [ $? = 0 ]; then
run_result='x86: '${model_name}'_train pass'; echo ${run_result} >> ${run_benchmark_result_file}
else
@ -281,8 +281,8 @@ function Run_x86() {
echo ${model_name} >> "${run_x86_log_file}"
echo 'cd '${x86_path}'/mindspore-lite-'${version}'-runtime-x86-'${process_unit_x86} >> "${run_x86_log_file}"
cd ${x86_path}/mindspore-lite-${version}-runtime-x86-${process_unit_x86} || return 1
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath='${ms_models_path}'/'${model_name}'.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath=${ms_models_path}/${model_name}.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out --accuracyThreshold=1.5 >> "${run_x86_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile='${ms_models_path}'/'${model_name}'.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile=${ms_models_path}/${model_name}.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out --accuracyThreshold=1.5 >> "${run_x86_log_file}"
if [ $? = 0 ]; then
run_result='x86: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
else
@ -299,8 +299,8 @@ function Run_x86() {
echo ${model_name} >> "${run_x86_log_file}"
echo 'cd '${x86_path}'/mindspore-lite-'${version}'-runtime-x86-'${process_unit_x86} >> "${run_x86_log_file}"
cd ${x86_path}/mindspore-lite-${version}-runtime-x86-${process_unit_x86} || return 1
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath='${ms_models_path}'/'${model_name}'.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelPath=${ms_models_path}/${model_name}_weightquant.ms --inDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --calibDataPath=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile='${ms_models_path}'/'${model_name}'.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/'${model_name}'.ms.out' >> "${run_x86_log_file}"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./lib:./third_party/libjpeg-turbo/lib:./third_party/opencv/lib;./benchmark/benchmark --modelFile=${ms_models_path}/${model_name}_weightquant.ms --inDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/input/${model_name}.ms.bin --benchmarkDataFile=/home/workspace/mindspore_dataset/mslite/models/hiai/input_output/output/${model_name}.ms.out >> "${run_x86_log_file}"
if [ $? = 0 ]; then
run_result='x86: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
else
@ -349,8 +349,8 @@ function Run_arm64() {
fi
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -359,8 +359,8 @@ function Run_arm64() {
fi
# run benchmark test without clib data
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -377,8 +377,8 @@ function Run_arm64() {
fi
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -388,8 +388,8 @@ function Run_arm64() {
# run benchmark test without clib data
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -406,8 +406,8 @@ function Run_arm64() {
fi
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -417,8 +417,8 @@ function Run_arm64() {
# run benchmark test without clib data
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "{run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "{run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -435,8 +435,8 @@ function Run_arm64() {
fi
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out --fp16Priority=true --accuracyThreshold=5' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out --fp16Priority=true --accuracyThreshold=5' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out --enableFp16=true --accuracyThreshold=5' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out --enableFp16=true --accuracyThreshold=5' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -446,8 +446,8 @@ function Run_arm64() {
# run benchmark test without clib data
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2 --fp16Priority=true' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2 --fp16Priority=true' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2 --enableFp16=true' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2 --enableFp16=true' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -464,8 +464,8 @@ function Run_arm64() {
fi
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -475,8 +475,8 @@ function Run_arm64() {
# run benchmark test without clib data
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -493,8 +493,8 @@ function Run_arm64() {
fi
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64_gpu: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -504,8 +504,8 @@ function Run_arm64() {
# run benchmark test without clib data
#echo ${model_name}
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64_gpu: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -522,8 +522,8 @@ function Run_arm64() {
fi
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out --fp16Priority=true --accuracyThreshold=5' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out --fp16Priority=true --accuracyThreshold=5' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out --enableFp16=true --accuracyThreshold=5' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out --enableFp16=true --accuracyThreshold=5' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64_gpu_fp16: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -533,8 +533,8 @@ function Run_arm64() {
# run benchmark test without clib data
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2 --fp16Priority=true' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2 --fp16Priority=true' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2 --enableFp16=true' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --device=GPU --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2 --enableFp16=true' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64_gpu_fp16: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -552,8 +552,8 @@ function Run_arm64() {
fi
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out --accuracyThreshold=1.5' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out --accuracyThreshold=1.5' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out --accuracyThreshold=1.5' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out --accuracyThreshold=1.5' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -563,8 +563,8 @@ function Run_arm64() {
# run benchmark test without clib data
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "{run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "{run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -581,8 +581,8 @@ function Run_arm64() {
fi
echo ${model_name}'_train' >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'_train.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out --accuracyThreshold=1.5' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'_train.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out --accuracyThreshold=1.5' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'_train.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out --accuracyThreshold=1.5' >> "${run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'_train.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out --accuracyThreshold=1.5' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}'_train pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -592,8 +592,8 @@ function Run_arm64() {
# run benchmark test without clib data
echo ${model_name} >> "${run_arm64_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'_train.ms --warmUpLoopCount=1 --loopCount=2' >> "{run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'_train.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'_train.ms --warmUpLoopCount=1 --loopCount=2' >> "{run_arm64_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'_train.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm64_log_file}"
if [ $? = 0 ]; then
run_result='arm64: '${model_name}'_train pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -641,8 +641,8 @@ function Run_arm32() {
fi
echo ${model_name} >> "${run_arm32_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm32_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --inDataPath=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --calibDataPath=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> "${run_arm32_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --inDataFile=/data/local/tmp/input_output/input/'${model_name}'.ms.bin --benchmarkDataFile=/data/local/tmp/input_output/output/'${model_name}'.ms.out' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm32_log_file}"
if [ $? = 0 ]; then
run_result='arm32: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}
@ -652,8 +652,8 @@ function Run_arm32() {
# run benchmark test without clib data
echo ${model_name} >> "${run_arm32_log_file}"
echo 'cd /data/local/tmp/benchmark_test' > adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm32_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelPath='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> "${run_arm32_log_file}"
echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/data/local/tmp/benchmark_test;./benchmark --modelFile='${model_name}'.ms --warmUpLoopCount=1 --loopCount=2' >> adb_run_cmd.txt
adb -s ${device_id} shell < adb_run_cmd.txt >> "${run_arm32_log_file}"
if [ $? = 0 ]; then
run_result='arm32: '${model_name}' pass'; echo ${run_result} >> ${run_benchmark_result_file}

View File

@ -34,24 +34,24 @@ static const char *DELIM_SLASH = "/";
int Benchmark::GenerateRandomData(size_t size, void *data) {
MS_ASSERT(data != nullptr);
char *castedData = static_cast<char *>(data);
char *casted_data = static_cast<char *>(data);
for (size_t i = 0; i < size; i++) {
castedData[i] = static_cast<char>(i);
casted_data[i] = static_cast<char>(i);
}
return RET_OK;
}
int Benchmark::GenerateInputData() {
for (auto tensor : msInputs) {
for (auto tensor : ms_inputs_) {
MS_ASSERT(tensor != nullptr);
auto inputData = tensor->MutableData();
if (inputData == nullptr) {
auto input_data = tensor->MutableData();
if (input_data == nullptr) {
MS_LOG(ERROR) << "MallocData for inTensor failed";
return RET_ERROR;
}
MS_ASSERT(tensor->GetData() != nullptr);
auto tensorByteSize = tensor->Size();
auto status = GenerateRandomData(tensorByteSize, inputData);
auto tensor_byte_size = tensor->Size();
auto status = GenerateRandomData(tensor_byte_size, input_data);
if (status != 0) {
std::cerr << "GenerateRandomData for inTensor failed: " << status << std::endl;
MS_LOG(ERROR) << "GenerateRandomData for inTensor failed:" << status;
@ -62,7 +62,7 @@ int Benchmark::GenerateInputData() {
}
int Benchmark::LoadInput() {
if (_flags->inDataPath.empty()) {
if (flags_->in_data_file_.empty()) {
auto status = GenerateInputData();
if (status != 0) {
std::cerr << "Generate input data error " << status << std::endl;
@ -81,33 +81,34 @@ int Benchmark::LoadInput() {
}
int Benchmark::ReadInputFile() {
if (msInputs.empty()) {
if (ms_inputs_.empty()) {
return RET_OK;
}
if (this->_flags->inDataType == kImage) {
if (this->flags_->in_data_type_ == kImage) {
MS_LOG(ERROR) << "Not supported image input";
return RET_ERROR;
} else {
for (size_t i = 0; i < _flags->input_data_list.size(); i++) {
auto cur_tensor = msInputs.at(i);
for (size_t i = 0; i < flags_->input_data_list_.size(); i++) {
auto cur_tensor = ms_inputs_.at(i);
MS_ASSERT(cur_tensor != nullptr);
size_t size;
char *binBuf = ReadFile(_flags->input_data_list[i].c_str(), &size);
if (binBuf == nullptr) {
char *bin_buf = ReadFile(flags_->input_data_list_[i].c_str(), &size);
if (bin_buf == nullptr) {
MS_LOG(ERROR) << "ReadFile return nullptr";
return RET_ERROR;
}
auto tensorDataSize = cur_tensor->Size();
if (size != tensorDataSize) {
std::cerr << "Input binary file size error, required: " << tensorDataSize << ", in fact: " << size << std::endl;
MS_LOG(ERROR) << "Input binary file size error, required: " << tensorDataSize << ", in fact: " << size;
delete binBuf;
auto tensor_data_size = cur_tensor->Size();
if (size != tensor_data_size) {
std::cerr << "Input binary file size error, required: " << tensor_data_size << ", in fact: " << size
<< std::endl;
MS_LOG(ERROR) << "Input binary file size error, required: " << tensor_data_size << ", in fact: " << size;
delete bin_buf;
return RET_ERROR;
}
auto inputData = cur_tensor->MutableData();
memcpy(inputData, binBuf, tensorDataSize);
delete[](binBuf);
auto input_data = cur_tensor->MutableData();
memcpy(input_data, bin_buf, tensor_data_size);
delete[](bin_buf);
}
}
return RET_OK;
@ -115,94 +116,96 @@ int Benchmark::ReadInputFile() {
// calibData is FP32
int Benchmark::ReadCalibData() {
const char *calibDataPath = _flags->calibDataPath.c_str();
const char *calib_data_path = flags_->benchmark_data_file_.c_str();
// read calib data
std::ifstream inFile(calibDataPath);
if (!inFile.good()) {
std::cerr << "file: " << calibDataPath << " is not exist" << std::endl;
MS_LOG(ERROR) << "file: " << calibDataPath << " is not exist";
std::ifstream in_file(calib_data_path);
if (!in_file.good()) {
std::cerr << "file: " << calib_data_path << " is not exist" << std::endl;
MS_LOG(ERROR) << "file: " << calib_data_path << " is not exist";
return RET_ERROR;
}
if (!inFile.is_open()) {
std::cerr << "file: " << calibDataPath << " open failed" << std::endl;
MS_LOG(ERROR) << "file: " << calibDataPath << " open failed";
inFile.close();
if (!in_file.is_open()) {
std::cerr << "file: " << calib_data_path << " open failed" << std::endl;
MS_LOG(ERROR) << "file: " << calib_data_path << " open failed";
in_file.close();
return RET_ERROR;
}
std::string line;
MS_LOG(INFO) << "Start reading calibData file";
std::string tensorName;
while (!inFile.eof()) {
getline(inFile, line);
std::stringstream stringLine1(line);
std::string tensor_name;
while (!in_file.eof()) {
getline(in_file, line);
std::stringstream string_line1(line);
size_t dim = 0;
stringLine1 >> tensorName >> dim;
string_line1 >> tensor_name >> dim;
std::vector<size_t> dims;
size_t shapeSize = 1;
size_t shape_size = 1;
for (size_t i = 0; i < dim; i++) {
size_t tmpDim;
stringLine1 >> tmpDim;
dims.push_back(tmpDim);
shapeSize *= tmpDim;
size_t tmp_dim;
string_line1 >> tmp_dim;
dims.push_back(tmp_dim);
shape_size *= tmp_dim;
}
getline(inFile, line);
std::stringstream stringLine2(line);
std::vector<float> tensorData;
for (size_t i = 0; i < shapeSize; i++) {
float tmpData;
stringLine2 >> tmpData;
tensorData.push_back(tmpData);
getline(in_file, line);
std::stringstream string_line2(line);
std::vector<float> tensor_data;
for (size_t i = 0; i < shape_size; i++) {
float tmp_data;
string_line2 >> tmp_data;
tensor_data.push_back(tmp_data);
}
auto *checkTensor = new CheckTensor(dims, tensorData);
this->calibData.insert(std::make_pair(tensorName, checkTensor));
auto *check_tensor = new CheckTensor(dims, tensor_data);
this->benchmark_data_.insert(std::make_pair(tensor_name, check_tensor));
}
inFile.close();
in_file.close();
MS_LOG(INFO) << "Finish reading calibData file";
return RET_OK;
}
int Benchmark::CompareOutput() {
std::cout << "================ Comparing Output data ================" << std::endl;
float totalBias = 0;
int totalSize = 0;
bool hasError = false;
for (const auto &calibTensor : calibData) {
std::string nodeOrTensorName = calibTensor.first;
auto tensors = session->GetOutputsByNodeName(nodeOrTensorName);
float total_bias = 0;
int total_size = 0;
bool has_error = false;
for (const auto &calib_tensor : benchmark_data_) {
std::string node_or_tensor_name = calib_tensor.first;
auto tensors = session_->GetOutputsByNodeName(node_or_tensor_name);
mindspore::tensor::MSTensor *tensor = nullptr;
if (tensors.empty() || tensors.size() != 1) {
MS_LOG(INFO) << "Cannot find output node: " << nodeOrTensorName
MS_LOG(INFO) << "Cannot find output node: " << node_or_tensor_name
<< " or node has more than one output tensor, switch to GetOutputByTensorName";
tensor = session->GetOutputByTensorName(nodeOrTensorName);
tensor = session_->GetOutputByTensorName(node_or_tensor_name);
if (tensor == nullptr) {
MS_LOG(ERROR) << "Cannot find output tensor " << nodeOrTensorName << ", get model output failed";
MS_LOG(ERROR) << "Cannot find output tensor " << node_or_tensor_name << ", get model output failed";
return RET_ERROR;
}
} else {
tensor = tensors.front();
}
MS_ASSERT(tensor->GetData() != nullptr);
MS_ASSERT(tensor->MutableData() != nullptr);
float bias = 0;
switch (msCalibDataType) {
case TypeId::kNumberTypeFloat: {
bias = CompareData<float>(nodeOrTensorName, tensor->shape(), static_cast<float *>(tensor->MutableData()));
bias = CompareData<float>(node_or_tensor_name, tensor->shape(), static_cast<float *>(tensor->MutableData()));
break;
}
case TypeId::kNumberTypeInt8: {
bias = CompareData<int8_t>(nodeOrTensorName, tensor->shape(), static_cast<int8_t *>(tensor->MutableData()));
bias = CompareData<int8_t>(node_or_tensor_name, tensor->shape(), static_cast<int8_t *>(tensor->MutableData()));
break;
}
case TypeId::kNumberTypeUInt8: {
bias = CompareData<uint8_t>(nodeOrTensorName, tensor->shape(), static_cast<uint8_t *>(tensor->MutableData()));
bias =
CompareData<uint8_t>(node_or_tensor_name, tensor->shape(), static_cast<uint8_t *>(tensor->MutableData()));
break;
}
case TypeId::kNumberTypeInt32: {
bias = CompareData<int32_t>(nodeOrTensorName, tensor->shape(), static_cast<int32_t *>(tensor->MutableData()));
bias =
CompareData<int32_t>(node_or_tensor_name, tensor->shape(), static_cast<int32_t *>(tensor->MutableData()));
break;
}
default:
@ -210,28 +213,28 @@ int Benchmark::CompareOutput() {
return RET_ERROR;
}
if (bias >= 0) {
totalBias += bias;
totalSize++;
total_bias += bias;
total_size++;
} else {
hasError = true;
has_error = true;
break;
}
}
if (!hasError) {
float meanBias;
if (totalSize != 0) {
meanBias = totalBias / totalSize * 100;
if (!has_error) {
float mean_bias;
if (total_size != 0) {
mean_bias = total_bias / total_size * 100;
} else {
meanBias = 0;
mean_bias = 0;
}
std::cout << "Mean bias of all nodes/tensors: " << meanBias << "%" << std::endl;
std::cout << "Mean bias of all nodes/tensors: " << mean_bias << "%" << std::endl;
std::cout << "=======================================================" << std::endl << std::endl;
if (meanBias > this->_flags->accuracyThreshold) {
MS_LOG(ERROR) << "Mean bias of all nodes/tensors is too big: " << meanBias << "%";
std::cerr << "Mean bias of all nodes/tensors is too big: " << meanBias << "%" << std::endl;
if (mean_bias > this->flags_->accuracy_threshold_) {
MS_LOG(ERROR) << "Mean bias of all nodes/tensors is too big: " << mean_bias << "%";
std::cerr << "Mean bias of all nodes/tensors is too big: " << mean_bias << "%" << std::endl;
return RET_ERROR;
} else {
return RET_OK;
@ -247,8 +250,8 @@ int Benchmark::CompareOutput() {
int Benchmark::MarkPerformance() {
MS_LOG(INFO) << "Running warm up loops...";
std::cout << "Running warm up loops..." << std::endl;
for (int i = 0; i < _flags->warmUpLoopCount; i++) {
auto status = session->RunGraph();
for (int i = 0; i < flags_->warm_up_loop_count_; i++) {
auto status = session_->RunGraph();
if (status != 0) {
MS_LOG(ERROR) << "Inference error " << status;
std::cerr << "Inference error " << status << std::endl;
@ -258,15 +261,15 @@ int Benchmark::MarkPerformance() {
MS_LOG(INFO) << "Running benchmark loops...";
std::cout << "Running benchmark loops..." << std::endl;
uint64_t timeMin = 1000000;
uint64_t timeMax = 0;
uint64_t timeAvg = 0;
uint64_t time_min = 1000000;
uint64_t time_max = 0;
uint64_t time_avg = 0;
for (int i = 0; i < _flags->loopCount; i++) {
session->BindThread(true);
for (int i = 0; i < flags_->loop_count_; i++) {
session_->BindThread(true);
auto start = GetTimeUs();
auto status =
_flags->runTimeProfiler ? session->RunGraph(before_call_back_, after_call_back_) : session->RunGraph();
flags_->time_profiling_ ? session_->RunGraph(before_call_back_, after_call_back_) : session_->RunGraph();
if (status != 0) {
MS_LOG(ERROR) << "Inference error " << status;
std::cerr << "Inference error " << status;
@ -275,28 +278,28 @@ int Benchmark::MarkPerformance() {
auto end = GetTimeUs();
auto time = end - start;
timeMin = std::min(timeMin, time);
timeMax = std::max(timeMax, time);
timeAvg += time;
time_min = std::min(time_min, time);
time_max = std::max(time_max, time);
time_avg += time;
session->BindThread(false);
session_->BindThread(false);
}
if (_flags->runTimeProfiler) {
if (flags_->time_profiling_) {
const std::vector<std::string> per_op_name = {"opName", "avg(ms)", "percent", "calledTimes", "opTotalTime"};
const std::vector<std::string> per_op_type = {"opType", "avg(ms)", "percent", "calledTimes", "opTotalTime"};
PrintResult(per_op_name, op_times_by_name_);
PrintResult(per_op_type, op_times_by_type_);
}
if (_flags->loopCount > 0) {
timeAvg /= _flags->loopCount;
MS_LOG(INFO) << "Model = " << _flags->modelPath.substr(_flags->modelPath.find_last_of(DELIM_SLASH) + 1).c_str()
<< ", NumThreads = " << _flags->numThreads << ", MinRunTime = " << timeMin / 1000.0f
<< ", MaxRuntime = " << timeMax / 1000.0f << ", AvgRunTime = " << timeAvg / 1000.0f;
if (flags_->loop_count_ > 0) {
time_avg /= flags_->loop_count_;
MS_LOG(INFO) << "Model = " << flags_->model_file_.substr(flags_->model_file_.find_last_of(DELIM_SLASH) + 1).c_str()
<< ", NumThreads = " << flags_->num_threads_ << ", MinRunTime = " << time_min / 1000.0f
<< ", MaxRuntime = " << time_max / 1000.0f << ", AvgRunTime = " << time_avg / 1000.0f;
printf("Model = %s, NumThreads = %d, MinRunTime = %f ms, MaxRuntime = %f ms, AvgRunTime = %f ms\n",
_flags->modelPath.substr(_flags->modelPath.find_last_of(DELIM_SLASH) + 1).c_str(), _flags->numThreads,
timeMin / 1000.0f, timeMax / 1000.0f, timeAvg / 1000.0f);
flags_->model_file_.substr(flags_->model_file_.find_last_of(DELIM_SLASH) + 1).c_str(), flags_->num_threads_,
time_min / 1000.0f, time_max / 1000.0f, time_avg / 1000.0f);
}
return RET_OK;
}
@ -304,7 +307,7 @@ int Benchmark::MarkPerformance() {
int Benchmark::MarkAccuracy() {
MS_LOG(INFO) << "MarkAccuracy";
std::cout << "MarkAccuracy" << std::endl;
for (auto &msInput : msInputs) {
for (auto &msInput : ms_inputs_) {
switch (msInput->data_type()) {
case TypeId::kNumberTypeFloat:
PrintInputData<float>(msInput);
@ -326,7 +329,7 @@ int Benchmark::MarkAccuracy() {
return RET_ERROR;
}
}
auto status = session->RunGraph();
auto status = session_->RunGraph();
if (status != RET_OK) {
MS_LOG(ERROR) << "Inference error " << status;
std::cerr << "Inference error " << status << std::endl;
@ -350,90 +353,83 @@ int Benchmark::MarkAccuracy() {
}
int Benchmark::RunBenchmark() {
auto startPrepareTime = GetTimeUs();
auto start_prepare_time = GetTimeUs();
// Load graph
std::string modelName = _flags->modelPath.substr(_flags->modelPath.find_last_of(DELIM_SLASH) + 1);
std::string model_name = flags_->model_file_.substr(flags_->model_file_.find_last_of(DELIM_SLASH) + 1);
MS_LOG(INFO) << "start reading model file";
std::cout << "start reading model file" << std::endl;
size_t size = 0;
char *graphBuf = ReadFile(_flags->modelPath.c_str(), &size);
if (graphBuf == nullptr) {
MS_LOG(ERROR) << "Read model file failed while running " << modelName.c_str();
std::cerr << "Read model file failed while running " << modelName.c_str() << std::endl;
char *graph_buf = ReadFile(flags_->model_file_.c_str(), &size);
if (graph_buf == nullptr) {
MS_LOG(ERROR) << "Read model file failed while running " << model_name.c_str();
std::cerr << "Read model file failed while running " << model_name.c_str() << std::endl;
return RET_ERROR;
}
auto model = lite::Model::Import(graphBuf, size);
delete[](graphBuf);
auto model = std::shared_ptr<Model>(lite::Model::Import(graph_buf, size));
delete[](graph_buf);
if (model == nullptr) {
MS_LOG(ERROR) << "Import model file failed while running " << modelName.c_str();
std::cerr << "Import model file failed while running " << modelName.c_str() << std::endl;
MS_LOG(ERROR) << "Import model file failed while running " << model_name.c_str();
std::cerr << "Import model file failed while running " << model_name.c_str() << std::endl;
return RET_ERROR;
}
auto context = new (std::nothrow) lite::Context;
auto context = std::make_shared<Context>();
if (context == nullptr) {
MS_LOG(ERROR) << "New context failed while running " << modelName.c_str();
std::cerr << "New context failed while running " << modelName.c_str() << std::endl;
MS_LOG(ERROR) << "New context failed while running " << model_name.c_str();
std::cerr << "New context failed while running " << model_name.c_str() << std::endl;
return RET_ERROR;
}
if (_flags->device == "CPU") {
if (flags_->device_ == "CPU") {
context->device_type_ = lite::DT_CPU;
} else if (_flags->device == "GPU") {
} else if (flags_->device_ == "GPU") {
context->device_type_ = lite::DT_GPU;
}
if (_flags->cpuBindMode == -1) {
if (flags_->cpu_bind_mode_ == -1) {
context->cpu_bind_mode_ = MID_CPU;
} else if (_flags->cpuBindMode == 0) {
} else if (flags_->cpu_bind_mode_ == 0) {
context->cpu_bind_mode_ = HIGHER_CPU;
} else {
context->cpu_bind_mode_ = NO_BIND;
}
context->thread_num_ = _flags->numThreads;
context->float16_priority = _flags->fp16Priority;
session = session::LiteSession::CreateSession(context);
delete (context);
if (session == nullptr) {
MS_LOG(ERROR) << "CreateSession failed while running ", modelName.c_str();
std::cout << "CreateSession failed while running ", modelName.c_str();
context->thread_num_ = flags_->num_threads_;
context->enable_float16_ = flags_->enable_fp16_;
session_ = session::LiteSession::CreateSession(context.get());
if (session_ == nullptr) {
MS_LOG(ERROR) << "CreateSession failed while running ", model_name.c_str();
std::cout << "CreateSession failed while running ", model_name.c_str();
return RET_ERROR;
}
auto ret = session->CompileGraph(model);
auto ret = session_->CompileGraph(model.get());
if (ret != RET_OK) {
MS_LOG(ERROR) << "CompileGraph failed while running ", modelName.c_str();
std::cout << "CompileGraph failed while running ", modelName.c_str();
delete (session);
delete (model);
MS_LOG(ERROR) << "CompileGraph failed while running ", model_name.c_str();
std::cout << "CompileGraph failed while running ", model_name.c_str();
return ret;
}
model->Free();
msInputs = session->GetInputs();
auto endPrepareTime = GetTimeUs();
MS_LOG(INFO) << "PrepareTime = " << (endPrepareTime - startPrepareTime) / 1000 << " ms";
std::cout << "PrepareTime = " << (endPrepareTime - startPrepareTime) / 1000 << " ms" << std::endl;
ms_inputs_ = session_->GetInputs();
auto end_prepare_time = GetTimeUs();
MS_LOG(INFO) << "PrepareTime = " << (end_prepare_time - start_prepare_time) / 1000 << " ms";
std::cout << "PrepareTime = " << (end_prepare_time - start_prepare_time) / 1000 << " ms" << std::endl;
// Load input
MS_LOG(INFO) << "start generate input data";
auto status = LoadInput();
if (status != 0) {
MS_LOG(ERROR) << "Generate input data error";
delete (session);
delete (model);
return status;
}
if (!_flags->calibDataPath.empty()) {
if (!flags_->benchmark_data_file_.empty()) {
status = MarkAccuracy();
for (auto &data : calibData) {
for (auto &data : benchmark_data_) {
data.second->shape.clear();
data.second->data.clear();
delete data.second;
}
calibData.clear();
benchmark_data_.clear();
if (status != 0) {
MS_LOG(ERROR) << "Run MarkAccuracy error: " << status;
std::cout << "Run MarkAccuracy error: " << status << std::endl;
delete (session);
delete (model);
return status;
}
} else {
@ -441,24 +437,20 @@ int Benchmark::RunBenchmark() {
if (status != 0) {
MS_LOG(ERROR) << "Run MarkPerformance error: " << status;
std::cout << "Run MarkPerformance error: " << status << std::endl;
delete (session);
delete (model);
return status;
}
}
delete (session);
delete (model);
return RET_OK;
}
void BenchmarkFlags::InitInputDataList() {
char *input_list = new char[this->inDataPath.length() + 1];
snprintf(input_list, this->inDataPath.length() + 1, "%s", this->inDataPath.c_str());
char *input_list = new char[this->in_data_file_.length() + 1];
snprintf(input_list, this->in_data_file_.length() + 1, "%s", this->in_data_file_.c_str());
char *cur_input;
const char *split_c = ",";
cur_input = strtok(input_list, split_c);
while (cur_input != nullptr) {
input_data_list.emplace_back(cur_input);
input_data_list_.emplace_back(cur_input);
cur_input = strtok(nullptr, split_c);
}
delete[] input_list;
@ -466,19 +458,19 @@ void BenchmarkFlags::InitInputDataList() {
void BenchmarkFlags::InitResizeDimsList() {
std::string content;
content = this->resizeDimsIn;
content = this->resize_dims_in_;
std::vector<int64_t> shape;
auto shapeStrs = StringSplit(content, std::string(DELIM_COLON));
for (const auto &shapeStr : shapeStrs) {
auto shape_strs = StringSplit(content, std::string(DELIM_COLON));
for (const auto &shape_str : shape_strs) {
shape.clear();
auto dimStrs = StringSplit(shapeStr, std::string(DELIM_COMMA));
auto dim_strs = StringSplit(shape_str, std::string(DELIM_COMMA));
std::cout << "Resize Dims: ";
for (const auto &dimStr : dimStrs) {
std::cout << dimStr << " ";
shape.emplace_back(static_cast<int64_t>(std::stoi(dimStr)));
for (const auto &dim_str : dim_strs) {
std::cout << dim_str << " ";
shape.emplace_back(static_cast<int64_t>(std::stoi(dim_str)));
}
std::cout << std::endl;
this->resizeDims.emplace_back(shape);
this->resize_dims_.emplace_back(shape);
}
}
@ -493,11 +485,11 @@ int Benchmark::InitCallbackParameter() {
if (before_outputs.empty()) {
MS_LOG(INFO) << "The num of beforeOutputs is empty";
}
if (op_times_by_type_.find(callParam.type_callback_param) == op_times_by_type_.end()) {
op_times_by_type_.insert(std::make_pair(callParam.type_callback_param, std::make_pair(0, 0.0f)));
if (op_times_by_type_.find(callParam.node_type) == op_times_by_type_.end()) {
op_times_by_type_.insert(std::make_pair(callParam.node_type, std::make_pair(0, 0.0f)));
}
if (op_times_by_name_.find(callParam.name_callback_param) == op_times_by_name_.end()) {
op_times_by_name_.insert(std::make_pair(callParam.name_callback_param, std::make_pair(0, 0.0f)));
if (op_times_by_name_.find(callParam.node_name) == op_times_by_name_.end()) {
op_times_by_name_.insert(std::make_pair(callParam.node_name, std::make_pair(0, 0.0f)));
}
op_call_times_total_++;
@ -520,10 +512,10 @@ int Benchmark::InitCallbackParameter() {
float cost = static_cast<float>(opEnd - op_begin_) / 1000.0f;
op_cost_total_ += cost;
op_times_by_type_[call_param.type_callback_param].first++;
op_times_by_type_[call_param.type_callback_param].second += cost;
op_times_by_name_[call_param.name_callback_param].first++;
op_times_by_name_[call_param.name_callback_param].second += cost;
op_times_by_type_[call_param.node_type].first++;
op_times_by_type_[call_param.node_type].second += cost;
op_times_by_name_[call_param.node_name].first++;
op_times_by_name_[call_param.node_name].second += cost;
return true;
};
@ -531,36 +523,36 @@ int Benchmark::InitCallbackParameter() {
}
int Benchmark::Init() {
if (this->_flags == nullptr) {
if (this->flags_ == nullptr) {
return 1;
}
MS_LOG(INFO) << "ModelPath = " << this->_flags->modelPath;
MS_LOG(INFO) << "InDataPath = " << this->_flags->inDataPath;
MS_LOG(INFO) << "InDataType = " << this->_flags->inDataTypeIn;
MS_LOG(INFO) << "LoopCount = " << this->_flags->loopCount;
MS_LOG(INFO) << "DeviceType = " << this->_flags->device;
MS_LOG(INFO) << "AccuracyThreshold = " << this->_flags->accuracyThreshold;
MS_LOG(INFO) << "WarmUpLoopCount = " << this->_flags->warmUpLoopCount;
MS_LOG(INFO) << "NumThreads = " << this->_flags->numThreads;
MS_LOG(INFO) << "Fp16Priority = " << this->_flags->fp16Priority;
MS_LOG(INFO) << "calibDataPath = " << this->_flags->calibDataPath;
MS_LOG(INFO) << "ModelPath = " << this->flags_->model_file_;
MS_LOG(INFO) << "InDataPath = " << this->flags_->in_data_file_;
MS_LOG(INFO) << "InDataType = " << this->flags_->in_data_type_in_;
MS_LOG(INFO) << "LoopCount = " << this->flags_->loop_count_;
MS_LOG(INFO) << "DeviceType = " << this->flags_->device_;
MS_LOG(INFO) << "AccuracyThreshold = " << this->flags_->accuracy_threshold_;
MS_LOG(INFO) << "WarmUpLoopCount = " << this->flags_->warm_up_loop_count_;
MS_LOG(INFO) << "NumThreads = " << this->flags_->num_threads_;
MS_LOG(INFO) << "Fp16Priority = " << this->flags_->enable_fp16_;
MS_LOG(INFO) << "calibDataPath = " << this->flags_->benchmark_data_file_;
if (this->_flags->loopCount < 1) {
MS_LOG(ERROR) << "LoopCount:" << this->_flags->loopCount << " must be greater than 0";
std::cerr << "LoopCount:" << this->_flags->loopCount << " must be greater than 0" << std::endl;
if (this->flags_->loop_count_ < 1) {
MS_LOG(ERROR) << "LoopCount:" << this->flags_->loop_count_ << " must be greater than 0";
std::cerr << "LoopCount:" << this->flags_->loop_count_ << " must be greater than 0" << std::endl;
return RET_ERROR;
}
if (this->_flags->numThreads < 1) {
MS_LOG(ERROR) << "numThreads:" << this->_flags->numThreads << " must be greater than 0";
std::cerr << "numThreads:" << this->_flags->numThreads << " must be greater than 0" << std::endl;
if (this->flags_->num_threads_ < 1) {
MS_LOG(ERROR) << "numThreads:" << this->flags_->num_threads_ << " must be greater than 0";
std::cerr << "numThreads:" << this->flags_->num_threads_ << " must be greater than 0" << std::endl;
return RET_ERROR;
}
if (this->_flags->cpuBindMode == -1) {
if (this->flags_->cpu_bind_mode_ == -1) {
MS_LOG(INFO) << "cpuBindMode = MID_CPU";
std::cout << "cpuBindMode = MID_CPU" << std::endl;
} else if (this->_flags->cpuBindMode == 1) {
} else if (this->flags_->cpu_bind_mode_ == 1) {
MS_LOG(INFO) << "cpuBindMode = HIGHER_CPU";
std::cout << "cpuBindMode = HIGHER_CPU" << std::endl;
} else {
@ -568,38 +560,38 @@ int Benchmark::Init() {
std::cout << "cpuBindMode = NO_BIND" << std::endl;
}
this->_flags->inDataType = this->_flags->inDataTypeIn == "img" ? kImage : kBinary;
this->flags_->in_data_type_ = this->flags_->in_data_type_in_ == "img" ? kImage : kBinary;
if (!_flags->calibDataType.empty()) {
if (dataTypeMap.find(_flags->calibDataType) == dataTypeMap.end()) {
MS_LOG(ERROR) << "CalibDataType not supported: " << _flags->calibDataType.c_str();
if (!flags_->benchmark_data_type_.empty()) {
if (data_type_map_.find(flags_->benchmark_data_type_) == data_type_map_.end()) {
MS_LOG(ERROR) << "CalibDataType not supported: " << flags_->benchmark_data_type_.c_str();
return RET_ERROR;
}
msCalibDataType = dataTypeMap.at(_flags->calibDataType);
MS_LOG(INFO) << "CalibDataType = " << _flags->calibDataType.c_str();
std::cout << "CalibDataType = " << _flags->calibDataType.c_str() << std::endl;
msCalibDataType = data_type_map_.at(flags_->benchmark_data_type_);
MS_LOG(INFO) << "CalibDataType = " << flags_->benchmark_data_type_.c_str();
std::cout << "CalibDataType = " << flags_->benchmark_data_type_.c_str() << std::endl;
}
if (_flags->modelPath.empty()) {
if (flags_->model_file_.empty()) {
MS_LOG(ERROR) << "modelPath is required";
std::cerr << "modelPath is required" << std::endl;
return 1;
}
_flags->InitInputDataList();
_flags->InitResizeDimsList();
if (!_flags->resizeDims.empty() && _flags->resizeDims.size() != _flags->input_data_list.size()) {
flags_->InitInputDataList();
flags_->InitResizeDimsList();
if (!flags_->resize_dims_.empty() && flags_->resize_dims_.size() != flags_->input_data_list_.size()) {
MS_LOG(ERROR) << "Size of input resizeDims should be equal to size of input inDataPath";
std::cerr << "Size of input resizeDims should be equal to size of input inDataPath" << std::endl;
return RET_ERROR;
}
if (_flags->device != "CPU" && _flags->device != "GPU") {
MS_LOG(ERROR) << "Device type:" << _flags->device << " is not supported.";
std::cerr << "Device type:" << _flags->device << " is not supported." << std::endl;
if (flags_->device_ != "CPU" && flags_->device_ != "GPU") {
MS_LOG(ERROR) << "Device type:" << flags_->device_ << " is not supported.";
std::cerr << "Device type:" << flags_->device_ << " is not supported." << std::endl;
return RET_ERROR;
}
if (_flags->runTimeProfiler) {
if (flags_->time_profiling_) {
auto status = InitCallbackParameter();
if (status != RET_OK) {
MS_LOG(ERROR) << "Init callback Parameter failed.";
@ -627,7 +619,7 @@ int Benchmark::PrintResult(const std::vector<std::string> &title,
}
columns.push_back(iter.first);
len = snprintf(stringBuf[1], sizeof(stringBuf[1]), "%f", iter.second.second / _flags->loopCount);
len = snprintf(stringBuf[1], sizeof(stringBuf[1]), "%f", iter.second.second / flags_->loop_count_);
if (len > columnLenMax.at(1)) {
columnLenMax.at(1) = len + 4;
}
@ -676,10 +668,11 @@ int Benchmark::PrintResult(const std::vector<std::string> &title,
}
Benchmark::~Benchmark() {
for (auto iter : this->calibData) {
for (auto iter : this->benchmark_data_) {
delete (iter.second);
}
this->calibData.clear();
this->benchmark_data_.clear();
delete (session_);
}
int RunBenchmark(int argc, const char **argv) {
@ -697,26 +690,27 @@ int RunBenchmark(int argc, const char **argv) {
return RET_OK;
}
Benchmark mBenchmark(&flags);
auto status = mBenchmark.Init();
Benchmark benchmark(&flags);
auto status = benchmark.Init();
if (status != 0) {
MS_LOG(ERROR) << "Benchmark init Error : " << status;
std::cerr << "Benchmark init Error : " << status << std::endl;
return RET_ERROR;
}
status = mBenchmark.RunBenchmark();
status = benchmark.RunBenchmark();
if (status != 0) {
MS_LOG(ERROR) << "Run Benchmark " << flags.modelPath.substr(flags.modelPath.find_last_of(DELIM_SLASH) + 1).c_str()
MS_LOG(ERROR) << "Run Benchmark "
<< flags.model_file_.substr(flags.model_file_.find_last_of(DELIM_SLASH) + 1).c_str()
<< " Failed : " << status;
std::cerr << "Run Benchmark " << flags.modelPath.substr(flags.modelPath.find_last_of(DELIM_SLASH) + 1).c_str()
std::cerr << "Run Benchmark " << flags.model_file_.substr(flags.model_file_.find_last_of(DELIM_SLASH) + 1).c_str()
<< " Failed : " << status << std::endl;
return RET_ERROR;
}
MS_LOG(INFO) << "Run Benchmark " << flags.modelPath.substr(flags.modelPath.find_last_of(DELIM_SLASH) + 1).c_str()
MS_LOG(INFO) << "Run Benchmark " << flags.model_file_.substr(flags.model_file_.find_last_of(DELIM_SLASH) + 1).c_str()
<< " Success.";
std::cout << "Run Benchmark " << flags.modelPath.substr(flags.modelPath.find_last_of(DELIM_SLASH) + 1).c_str()
std::cout << "Run Benchmark " << flags.model_file_.substr(flags.model_file_.find_last_of(DELIM_SLASH) + 1).c_str()
<< " Success." << std::endl;
return RET_OK;
}

View File

@ -54,22 +54,22 @@ class MS_API BenchmarkFlags : public virtual FlagParser {
public:
BenchmarkFlags() {
// common
AddFlag(&BenchmarkFlags::modelPath, "modelPath", "Input model path", "");
AddFlag(&BenchmarkFlags::inDataPath, "inDataPath", "Input data path, if not set, use random input", "");
AddFlag(&BenchmarkFlags::device, "device", "CPU | GPU", "CPU");
AddFlag(&BenchmarkFlags::cpuBindMode, "cpuBindMode",
"Input -1 for MID_CPU, 1 for HIGHER_CPU, 0 for NO_BIND, defalut value: 1", 1);
AddFlag(&BenchmarkFlags::model_file_, "modelFile", "Input model file", "");
AddFlag(&BenchmarkFlags::in_data_file_, "inDataFile", "Input data file, if not set, use random input", "");
AddFlag(&BenchmarkFlags::device_, "device", "CPU | GPU", "CPU");
AddFlag(&BenchmarkFlags::cpu_bind_mode_, "cpuBindMode",
"Input 0 for NO_BIND, 1 for HIGHER_CPU, 2 for MID_CPU, defalut value: 1", 1);
// MarkPerformance
AddFlag(&BenchmarkFlags::loopCount, "loopCount", "Run loop count", 10);
AddFlag(&BenchmarkFlags::numThreads, "numThreads", "Run threads number", 2);
AddFlag(&BenchmarkFlags::fp16Priority, "fp16Priority", "Priority float16", false);
AddFlag(&BenchmarkFlags::warmUpLoopCount, "warmUpLoopCount", "Run warm up loop", 3);
AddFlag(&BenchmarkFlags::runTimeProfiler, "runTimeProfiler", "Run time profiler", false);
AddFlag(&BenchmarkFlags::loop_count_, "loopCount", "Run loop count", 10);
AddFlag(&BenchmarkFlags::num_threads_, "numThreads", "Run threads number", 2);
AddFlag(&BenchmarkFlags::enable_fp16_, "enableFp16", "Enable float16", false);
AddFlag(&BenchmarkFlags::warm_up_loop_count_, "warmUpLoopCount", "Run warm up loop", 3);
AddFlag(&BenchmarkFlags::time_profiling_, "timeProfiling", "Run time profiling", false);
// MarkAccuracy
AddFlag(&BenchmarkFlags::calibDataPath, "calibDataPath", "Calibration data file path", "");
AddFlag(&BenchmarkFlags::calibDataType, "calibDataType", "Calibration data type. FLOAT | INT32 | INT8 | UINT8",
"FLOAT");
AddFlag(&BenchmarkFlags::accuracyThreshold, "accuracyThreshold", "Threshold of accuracy", 0.5);
AddFlag(&BenchmarkFlags::benchmark_data_file_, "benchmarkDataFile", "Benchmark data file path", "");
AddFlag(&BenchmarkFlags::benchmark_data_type_, "benchmarkDataType",
"Benchmark data type. FLOAT | INT32 | INT8 | UINT8", "FLOAT");
AddFlag(&BenchmarkFlags::accuracy_threshold_, "accuracyThreshold", "Threshold of accuracy", 0.5);
}
~BenchmarkFlags() override = default;
@ -80,32 +80,32 @@ class MS_API BenchmarkFlags : public virtual FlagParser {
public:
// common
std::string modelPath;
std::string inDataPath;
std::vector<std::string> input_data_list;
InDataType inDataType;
std::string inDataTypeIn = "bin";
int cpuBindMode = 1;
std::string model_file_;
std::string in_data_file_;
std::vector<std::string> input_data_list_;
InDataType in_data_type_;
std::string in_data_type_in_ = "bin";
int cpu_bind_mode_ = 1;
// MarkPerformance
int loopCount;
int numThreads;
bool fp16Priority;
int warmUpLoopCount;
bool runTimeProfiler;
int loop_count_;
int num_threads_;
bool enable_fp16_;
int warm_up_loop_count_;
bool time_profiling_;
// MarkAccuracy
std::string calibDataPath;
std::string calibDataType;
float accuracyThreshold;
std::string benchmark_data_file_;
std::string benchmark_data_type_;
float accuracy_threshold_;
// Resize
std::string resizeDimsIn = "";
std::vector<std::vector<int64_t>> resizeDims;
std::string resize_dims_in_ = "";
std::vector<std::vector<int64_t>> resize_dims_;
std::string device;
std::string device_;
};
class MS_API Benchmark {
public:
explicit Benchmark(BenchmarkFlags *flags) : _flags(flags) {}
explicit Benchmark(BenchmarkFlags *flags) : flags_(flags) {}
virtual ~Benchmark();
@ -146,8 +146,8 @@ class MS_API Benchmark {
// tensorData need to be converter first
template <typename T>
float CompareData(const std::string &nodeName, std::vector<int> msShape, T *msTensorData) {
auto iter = this->calibData.find(nodeName);
if (iter != this->calibData.end()) {
auto iter = this->benchmark_data_.find(nodeName);
if (iter != this->benchmark_data_.end()) {
std::vector<size_t> castedMSShape;
size_t shapeSize = 1;
for (int64_t dim : msShape) {
@ -224,15 +224,15 @@ class MS_API Benchmark {
int MarkAccuracy();
private:
BenchmarkFlags *_flags;
session::LiteSession *session;
std::vector<mindspore::tensor::MSTensor *> msInputs;
std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>> msOutputs;
std::unordered_map<std::string, CheckTensor *> calibData;
std::unordered_map<std::string, TypeId> dataTypeMap{{"FLOAT", TypeId::kNumberTypeFloat},
{"INT8", TypeId::kNumberTypeInt8},
{"INT32", TypeId::kNumberTypeInt32},
{"UINT8", TypeId::kNumberTypeUInt8}};
BenchmarkFlags *flags_;
session::LiteSession *session_;
std::vector<mindspore::tensor::MSTensor *> ms_inputs_;
std::unordered_map<std::string, std::vector<mindspore::tensor::MSTensor *>> ms_outputs_;
std::unordered_map<std::string, CheckTensor *> benchmark_data_;
std::unordered_map<std::string, TypeId> data_type_map_{{"FLOAT", TypeId::kNumberTypeFloat},
{"INT8", TypeId::kNumberTypeInt8},
{"INT32", TypeId::kNumberTypeInt32},
{"UINT8", TypeId::kNumberTypeUInt8}};
TypeId msCalibDataType = TypeId::kNumberTypeFloat;
// callback parameters

View File

@ -101,8 +101,8 @@ FuncGraphPtr AnfTransform::Transform(const FuncGraphPtr &old_graph, const conver
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_ERROR);
return nullptr;
}
this->mQuantizer = std::make_unique<quant::WeightQuantizer>(
new_graph, config->quantSize, config->convWeightQuantChannelThreshold, config->bitNum);
this->mQuantizer = std::make_unique<quant::WeightQuantizer>(new_graph, config->quantWeightSize,
config->quantWeightChannel, config->bitNum);
if (mQuantizer == nullptr) {
MS_LOG(ERROR) << "New WeightQuantizer failed";
ReturnCode::GetSingleReturnCode()->UpdateReturnCode(RET_MEMORY_FAILED);

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MS_ANF_TRANSFORM_H
#define MS_ANF_TRANSFORM_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_ANF_TRANSFORM_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_ANF_TRANSFORM_H
#include <memory>
#include "schema/inner/model_generated.h"

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MS_CONVERTER_H
#define MS_CONVERTER_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_CONVERTER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_CONVERTER_H
#include <memory>
#include <string>

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef LITE_RETURN_CODE_H
#define LITE_RETURN_CODE_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_RETURN_CODE_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_RETURN_CODE_H
#include <string>
#include <set>
@ -70,4 +70,4 @@ class NoSupportOp {
};
} // namespace lite
} // namespace mindspore
#endif // LITE_RETURN_CODE_H
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_RETURN_CODE_H

View File

@ -25,23 +25,20 @@ namespace converter {
Flags::Flags() {
AddFlag(&Flags::fmkIn, "fmk", "Input model framework type. TFLITE | CAFFE | MINDIR | ONNX", "");
AddFlag(&Flags::modelFile, "modelFile",
"Input model file path. TFLITE: *.tflite | CAFFE: *.prototxt | MINDIR: *.mindir | ONNX: *.onnx", "");
"Input model file. TFLITE: *.tflite | CAFFE: *.prototxt | MINDIR: *.mindir | ONNX: *.onnx", "");
AddFlag(&Flags::outputFile, "outputFile", "Output model file path. Will add .ms automatically", "");
AddFlag(&Flags::weightFile, "weightFile",
"Input model weight file path. Needed when fmk is CAFFE. CAFFE: *.caffemodel", "");
AddFlag(&Flags::weightFile, "weightFile", "Input model weight file. Needed when fmk is CAFFE. CAFFE: *.caffemodel",
"");
AddFlag(&Flags::inferenceTypeIn, "inferenceType", "Data type of input and output tensors. FLOAT | INT8 | UINT8",
"FLOAT");
AddFlag(&Flags::quantTypeIn, "quantType", "Quantization Type. AwareTraining | PostTraining | WeightQuant", "");
AddFlag(&Flags::stdDev, "stdDev", "Standard deviation value for aware-quantization", "128");
AddFlag(&Flags::mean, "mean", "Mean value for aware-quantization", "-0.5");
AddFlag(&Flags::bitNum, "bitNum", "Weight quantization bitNum", "8");
AddFlag(&Flags::quantSize, "quantSize", "Weight quantization size threshold", "0");
AddFlag(&Flags::convWeightQuantChannelThreshold, "convWeightQuantChannelThreshold", "convWeightQuantChannelThreshold",
"16");
AddFlag(&Flags::configFile, "config_file", "Configuration for post-training.", "");
AddFlag(&Flags::quantWeightSize, "quantWeightSize", "Weight quantization size threshold", "0");
AddFlag(&Flags::quantWeightChannel, "quantWeightChannel", "Channel threshold for weight quantization", "16");
AddFlag(&Flags::configFile, "configFile", "Configuration for post-training.", "");
AddFlag(&Flags::trainModelIn, "trainModel",
"whether the model is going to be trained on device."
" true | false",
"true | false",
"false");
}
@ -64,11 +61,11 @@ int Flags::Init(int argc, const char **argv) {
}
if (this->modelFile.empty()) {
std::cerr << "INPUT MISSING: model file path is necessary";
return RET_INPUT_PARAM_LACK;
return RET_INPUT_PARAM_INVALID;
}
if (this->outputFile.empty()) {
std::cerr << "INPUT MISSING: output file path is necessary";
return RET_INPUT_PARAM_LACK;
return RET_INPUT_PARAM_INVALID;
}
if (this->outputFile.rfind('/') == this->outputFile.length() - 1) {
@ -78,7 +75,7 @@ int Flags::Init(int argc, const char **argv) {
if (this->fmkIn.empty()) {
std::cerr << "INPUT MISSING: fmk is necessary";
return RET_INPUT_PARAM_LACK;
return RET_INPUT_PARAM_INVALID;
}
if (this->inferenceTypeIn == "FLOAT") {

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef CONVERTER_FLAGS_H
#define CONVERTER_FLAGS_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_CONVERTER_FLAGS_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_CONVERTER_FLAGS_H
#include <string>
#include "tools/common/flag_parser.h"
@ -40,9 +40,6 @@ class Flags : public virtual mindspore::lite::FlagParser {
int Init(int argc, const char **argv);
private:
bool ValidateString(std::string pattern, std::string input);
public:
std::string modelFile;
std::string outputFile;
@ -58,13 +55,11 @@ class Flags : public virtual mindspore::lite::FlagParser {
std::string inferenceTypeIn;
// used for parse aware trainning
TypeId inferenceType = TypeId::kNumberTypeFloat;
std::string stdDev;
std::string mean;
// used for post-trainning-weight
std::string quantSize;
std::string quantWeightSize;
std::string bitNum;
std::string configFile;
std::string convWeightQuantChannelThreshold;
std::string quantWeightChannel;
std::string trainModelIn;
bool trainModel = false;
};

View File

@ -48,8 +48,7 @@ void GraphDefTransform::CreateQuantizer(const converter::Flags *flags) {
switch (type) {
case QuantType::QuantType_AwareTraining: {
MS_LOG(INFO) << "create AwareTrainingQuantizer!";
fbQuantizer =
std::make_unique<quant::AwareQuantizer>(graphDefT, flags->inferenceType, flags->stdDev, flags->mean);
fbQuantizer = std::make_unique<quant::AwareQuantizer>(graphDefT, flags->inferenceType);
break;
}
default:

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MS_GRAPHDEF_TRANSFORM_H
#define MS_GRAPHDEF_TRANSFORM_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_GRAPHDEF_TRANSFORM_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_GRAPHDEF_TRANSFORM_H
#include <memory>
#include "tools/converter/optimizer.h"

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MS_MODEL_PARSER_H
#define MS_MODEL_PARSER_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_MODEL_PARSER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_MODEL_PARSER_H
#include <google/protobuf/message.h>
#include <string>
#include <memory>

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MS_OPTIMIZER_H
#define MS_OPTIMIZER_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_OPTIMIZER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_OPTIMIZER_H
#include <vector>
#include "schema/inner/model_generated.h"
#include "include/errorcode.h"

View File

@ -40,49 +40,7 @@ const std::array<schema::PrimitiveType, 7> AwareQuantizer::propagatedOps = {
schema::PrimitiveType_Squeeze, schema::PrimitiveType_RealDiv, schema::PrimitiveType_Activation,
schema::PrimitiveType_DetectionPostProcess}};
STATUS InputArray::InitQuantParam() {
this->quantParam = std::make_unique<schema::QuantParamT>();
auto status = CalQuantizationParams(quantParam.get(), mMin, mMax, narrowRange, numBits);
if (status != RET_OK) {
return status;
}
return RET_OK;
}
STATUS InputArray::SetInputArrayQP(schema::MetaGraphT *graph, size_t inputTensorIdx) {
MS_ASSERT(graph != nullptr);
auto &tensor = graph->allTensors.at(inputTensorIdx);
MS_ASSERT(tensor != nullptr);
if (!tensor->quantParams.empty()) {
auto param = GetTensorQuantParam(tensor);
if (param != nullptr && param->inited) {
MS_LOG(DEBUG) << "tensor " << inputTensorIdx << " already has quantParam";
return RET_OK;
}
tensor->quantParams.clear();
}
std::unique_ptr<schema::QuantParamT> tmpQuantParam(new QuantParamT());
tmpQuantParam->inited = this->quantParam->inited;
tmpQuantParam->scale = this->quantParam->scale;
tmpQuantParam->zeroPoint = this->quantParam->zeroPoint;
tmpQuantParam->min = this->quantParam->min;
tmpQuantParam->max = this->quantParam->max;
tensor->quantParams.push_back(std::move(tmpQuantParam));
return RET_OK;
}
AwareQuantizer::AwareQuantizer(schema::MetaGraphT *graph, const TypeId &inferType, const string &stdValues,
const string &meanValues)
: FbQuantizer(graph) {
MS_ASSERT(graph != nullptr);
string::size_type sz;
const float stdValue = std::stof(stdValues, &sz);
sz = 0;
const float mean = std::stof(meanValues, &sz);
mInputArray = new (std::nothrow) InputArray(mean, stdValue);
mInputArray->dataType = inferType;
mInputArray->InitQuantParam();
}
AwareQuantizer::AwareQuantizer(schema::MetaGraphT *graph, const TypeId &inferType) : FbQuantizer(graph) {}
STATUS AwareQuantizer::RemoveFakeQuant() { return RET_OK; }
@ -101,15 +59,6 @@ STATUS AwareQuantizer::GenerateDefaultQuantParam(const schema::MetaGraphT *subGr
STATUS AwareQuantizer::SetAttrToConvolution(const schema::MetaGraphT *subGraph, schema::CNodeT *node) { return RET_OK; }
STATUS AwareQuantizer::GenerateQuantParam() {
MS_ASSERT(graph->inputIndex.size() == 1);
// set graphInputNode input
for (auto graphInputIndex : graph->inputIndex) {
auto status = mInputArray->SetInputArrayQP(graph, graphInputIndex);
if (status != RET_OK) {
MS_LOG(WARNING) << "SetInputArrayQP failed";
return status;
}
}
auto *quantParamRegister = QuantParamCalcRegister::GetInstance();
for (auto iter = graph->nodes.begin(); iter != graph->nodes.end(); iter++) {
@ -379,6 +328,7 @@ STATUS AwareQuantizer::QuantConvWeight(const schema::MetaGraphT *subGraph, schem
weightTensor->quantParams.emplace_back(weightQauntParam.release());
}
weightTensor->data.resize(wShapeSize * sizeof(uint8_t));
::memcpy(weightTensor->data.data(), qDatas.data(), wShapeSize);
weightTensor->dataType = TypeId::kNumberTypeInt8;
return RET_OK;

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MS_AWARE_QUANTIZER_H
#define MS_AWARE_QUANTIZER_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_AWARE_QUANTIZER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_AWARE_QUANTIZER_H
#include <array>
#include <string>
@ -26,32 +26,11 @@
#include "tools/converter/quantizer/quantize_util.h"
namespace mindspore::lite::quant {
struct InputArray {
std::unique_ptr<schema::QuantParamT> quantParam;
float mMin = 0.0f;
float mMax = 0.0f;
bool narrowRange = false;
int numBits = 8;
TypeId dataType = TypeId::kTypeUnknown;
InputArray(float mean, float stdDev, TypeId dataType = TypeId::kNumberTypeFloat) {
this->dataType = dataType;
constexpr float qmin = -128;
constexpr float qmax = 127;
mMin = (qmin - mean) / stdDev;
mMax = (qmax - mean) / stdDev;
}
STATUS InitQuantParam();
STATUS SetInputArrayQP(schema::MetaGraphT *graph, size_t inputTensorIdx);
};
class AwareQuantizer : public FbQuantizer {
public:
AwareQuantizer(schema::MetaGraphT *graph, const TypeId &inferType, const std::string &stdValues,
const std::string &meanValues);
AwareQuantizer(schema::MetaGraphT *graph, const TypeId &inferType);
~AwareQuantizer() { delete (mInputArray); }
~AwareQuantizer() override = default;
STATUS RemoveFakeQuant() override;
@ -77,8 +56,6 @@ class AwareQuantizer : public FbQuantizer {
float inputScale = 0.0f;
InputArray *mInputArray;
static const std::array<schema::PrimitiveType, 7> propagatedOps;
};
} // namespace mindspore::lite::quant

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef CALC_QUANT_PARAM_H
#define CALC_QUANT_PARAM_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_CALC_QUANT_PARAM_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_CALC_QUANT_PARAM_H
#include <unordered_map>
#include <memory>

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MINDSPORE_GENERAL_BITPACKING_H
#define MINDSPORE_GENERAL_BITPACKING_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER__GENERAL_BITPACKING_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER__GENERAL_BITPACKING_H
#include <stdint.h>
#include <stack>
#include <queue>

View File

@ -861,14 +861,14 @@ STATUS PostTrainingQuantizer::DoInference() {
[&](const std::vector<mindspore::tensor::MSTensor *> &beforeInputs,
const std::vector<mindspore::tensor::MSTensor *> &beforeOutputs,
const mindspore::session::CallBackParam &callParam) -> bool {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.name_callback_param, beforeInputs) != RET_OK) {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.node_name, beforeInputs) != RET_OK) {
return false;
}
auto tensor = beforeInputs[0];
const float *tData = static_cast<const float *>(tensor->MutableData());
size_t elem_count = tensor->ElementsNum();
vector<float> data(tData, tData + elem_count);
this->calibrator_->RecordMaxValue(callParam.name_callback_param, data, this->calibrator_->GetInputDivergInfo());
this->calibrator_->RecordMaxValue(callParam.node_name, data, this->calibrator_->GetInputDivergInfo());
return true;
};
// func
@ -876,14 +876,14 @@ STATUS PostTrainingQuantizer::DoInference() {
const std::vector<mindspore::tensor::MSTensor *> &afterInputs,
const std::vector<mindspore::tensor::MSTensor *> &afterOutputs,
const mindspore::session::CallBackParam &callParam) -> bool {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.name_callback_param, afterOutputs) != RET_OK) {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.node_name, afterOutputs) != RET_OK) {
return false;
}
auto tensor = afterOutputs[0];
const float *tensor_data = static_cast<const float *>(tensor->MutableData());
size_t elem_count = tensor->ElementsNum();
vector<float> data(tensor_data, tensor_data + elem_count);
this->calibrator_->RecordMaxValue(callParam.name_callback_param, data, this->calibrator_->GetOutputDivergInfo());
this->calibrator_->RecordMaxValue(callParam.node_name, data, this->calibrator_->GetOutputDivergInfo());
return true;
};
status = fp32_session_->RunGraph(beforeCallBack, afterCallBack);
@ -918,9 +918,9 @@ STATUS PostTrainingQuantizer::Int8Inference() {
[this](const std::vector<mindspore::tensor::MSTensor *> &beforeInputs,
const std::vector<mindspore::tensor::MSTensor *> &beforeOutputs,
const mindspore::session::CallBackParam &callParam) -> bool {
if (callParam.type_callback_param == kTypeConv2D || callParam.type_callback_param == kTypeDepthwiseConv2D) {
if (callParam.node_type == kTypeConv2D || callParam.node_type == kTypeDepthwiseConv2D) {
vector<float> fp32_op_input;
while (!OpInputDataHandle(FETCH, callParam.name_callback_param, &fp32_op_input)) {
while (!OpInputDataHandle(FETCH, callParam.node_name, &fp32_op_input)) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
auto tensor = beforeInputs[0];
@ -966,9 +966,9 @@ STATUS PostTrainingQuantizer::Int8Inference() {
const std::vector<mindspore::tensor::MSTensor *> &afterInputs,
const std::vector<mindspore::tensor::MSTensor *> &afterOutputs,
const mindspore::session::CallBackParam &callParam) -> bool {
if (callParam.type_callback_param == kTypeConv2D || callParam.type_callback_param == kTypeDepthwiseConv2D) {
if (callParam.node_type == kTypeConv2D || callParam.node_type == kTypeDepthwiseConv2D) {
vector<float> fp32_op_output_ch_mean;
while (!OpOutputChMeanDataHandle(FETCH, callParam.name_callback_param, &fp32_op_output_ch_mean)) {
while (!OpOutputChMeanDataHandle(FETCH, callParam.node_name, &fp32_op_output_ch_mean)) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
auto tensor = afterOutputs[0];
@ -1020,12 +1020,12 @@ STATUS PostTrainingQuantizer::Int8Inference() {
std::transform(fp32_op_output_ch_mean.begin(), fp32_op_output_ch_mean.end(), dequant_op_output_ch_mean.begin(),
dequant_op_output_ch_mean.begin(), std::minus<>());
if (op_bias_diff_map.find(callParam.name_callback_param) != op_bias_diff_map.end()) {
auto &bias_diff = op_bias_diff_map[callParam.name_callback_param];
if (op_bias_diff_map.find(callParam.node_name) != op_bias_diff_map.end()) {
auto &bias_diff = op_bias_diff_map[callParam.node_name];
std::transform(bias_diff.begin(), bias_diff.end(), dequant_op_output_ch_mean.begin(), bias_diff.begin(),
std::plus<>());
} else {
op_bias_diff_map[callParam.name_callback_param] = dequant_op_output_ch_mean;
op_bias_diff_map[callParam.node_name] = dequant_op_output_ch_mean;
}
}
return true;
@ -1060,8 +1060,8 @@ STATUS PostTrainingQuantizer::BiasCorrection(FuncGraphPtr func_graph) {
[this](const std::vector<mindspore::tensor::MSTensor *> &beforeInputs,
const std::vector<mindspore::tensor::MSTensor *> &beforeOutputs,
const mindspore::session::CallBackParam &callParam) -> bool {
if (callParam.type_callback_param == kTypeConv2D || callParam.type_callback_param == kTypeDepthwiseConv2D) {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.name_callback_param, beforeInputs) != RET_OK) {
if (callParam.node_type == kTypeConv2D || callParam.node_type == kTypeDepthwiseConv2D) {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.node_name, beforeInputs) != RET_OK) {
return false;
}
auto tensor = beforeInputs[0];
@ -1073,7 +1073,7 @@ STATUS PostTrainingQuantizer::BiasCorrection(FuncGraphPtr func_graph) {
MS_LOG(ERROR) << "memcpy error: " << ret;
return false;
}
while (!OpInputDataHandle(STORE, callParam.name_callback_param, &fp32_op_input)) {
while (!OpInputDataHandle(STORE, callParam.node_name, &fp32_op_input)) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
@ -1084,8 +1084,8 @@ STATUS PostTrainingQuantizer::BiasCorrection(FuncGraphPtr func_graph) {
const std::vector<mindspore::tensor::MSTensor *> &afterInputs,
const std::vector<mindspore::tensor::MSTensor *> &afterOutputs,
const mindspore::session::CallBackParam &callParam) -> bool {
if (callParam.type_callback_param == kTypeConv2D || callParam.type_callback_param == kTypeDepthwiseConv2D) {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.name_callback_param, afterOutputs) != RET_OK) {
if (callParam.node_type == kTypeConv2D || callParam.node_type == kTypeDepthwiseConv2D) {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.node_name, afterOutputs) != RET_OK) {
return false;
}
auto tensor = afterOutputs[0];
@ -1117,7 +1117,7 @@ STATUS PostTrainingQuantizer::BiasCorrection(FuncGraphPtr func_graph) {
sum = sum / one_filter_size;
fp32_op_output_ch_mean[i] = sum;
}
while (!OpOutputChMeanDataHandle(STORE, callParam.name_callback_param, &fp32_op_output_ch_mean)) {
while (!OpOutputChMeanDataHandle(STORE, callParam.node_name, &fp32_op_output_ch_mean)) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
}
@ -1264,15 +1264,14 @@ STATUS PostTrainingQuantizer::CollectDataFrequency() {
[&](const std::vector<mindspore::tensor::MSTensor *> &beforeInputs,
const std::vector<mindspore::tensor::MSTensor *> &beforeOutputs,
const mindspore::session::CallBackParam &callParam) {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.name_callback_param, beforeInputs) != RET_OK) {
if (PostTrainingQuantizer::CheckFp32TensorVec(callParam.node_name, beforeInputs) != RET_OK) {
return false;
}
auto tensor = beforeInputs[0];
const float *tensor_data = static_cast<const float *>(tensor->MutableData());
size_t shape_size = tensor->ElementsNum();
vector<float> data(tensor_data, tensor_data + shape_size);
this->calibrator_->UpdateDataFrequency(callParam.name_callback_param, data,
this->calibrator_->GetInputDivergInfo());
this->calibrator_->UpdateDataFrequency(callParam.node_name, data, this->calibrator_->GetInputDivergInfo());
return true;
};
@ -1280,15 +1279,14 @@ STATUS PostTrainingQuantizer::CollectDataFrequency() {
[&](const std::vector<mindspore::tensor::MSTensor *> &after_inputs,
const std::vector<mindspore::tensor::MSTensor *> &after_outputs,
const mindspore::session::CallBackParam &call_param) {
if (PostTrainingQuantizer::CheckFp32TensorVec(call_param.name_callback_param, after_outputs) != RET_OK) {
if (PostTrainingQuantizer::CheckFp32TensorVec(call_param.node_name, after_outputs) != RET_OK) {
return false;
}
auto tensor = after_outputs[0];
const float *tenosr_data = static_cast<const float *>(tensor->MutableData());
size_t shape_size = tensor->ElementsNum();
vector<float> data(tenosr_data, tenosr_data + shape_size);
this->calibrator_->UpdateDataFrequency(call_param.name_callback_param, data,
this->calibrator_->GetOutputDivergInfo());
this->calibrator_->UpdateDataFrequency(call_param.node_name, data, this->calibrator_->GetOutputDivergInfo());
return true;
};
status = fp32_session_->RunGraph(beforeCallBack, afterCallBack);

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef POSTRAINING_QUANTIZER_H
#define POSTRAINING_QUANTIZER_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_POSTRAINING_QUANTIZER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_POSTRAINING_QUANTIZER_H
#include <string>
#include <memory>
@ -221,4 +221,4 @@ class Calibrator {
} // namespace quant
} // namespace lite
} // namespace mindspore
#endif // POSTRAINING_QUANTIZER_H
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_POSTRAINING_QUANTIZER_H

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef LITE_QUANT_CAST_H
#define LITE_QUANT_CAST_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER__QUANT_CAST_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER__QUANT_CAST_H
#include "mindspore/core/ir/anf.h"
#include "mindspore/lite/include/errorcode.h"
@ -36,4 +36,4 @@ class QuantCast {
} // namespace mindspore::lite::quant
#endif // LITE_QUANT_CAST_H
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER__QUANT_CAST_H

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef QUANTIZER_UTIL_H
#define QUANTIZER_UTIL_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_QUANTIZER_UTIL_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_QUANTIZER_UTIL_H
#include <memory>
#include <string>

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef MS_QUANTIZER_H
#define MS_QUANTIZER_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_QUANTIZER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_QUANTIZER_H
#include <unordered_map>
#include <utility>
@ -63,7 +63,7 @@ class FbQuantizer {
public:
explicit FbQuantizer(schema::MetaGraphT *graph) : graph(graph) {}
~FbQuantizer() = default;
virtual ~FbQuantizer() = default;
virtual STATUS RemoveFakeQuant();

View File

@ -40,11 +40,11 @@ bool WeightQuantizer::IsPosNum(const std::string &str) {
}
STATUS WeightQuantizer::WeightQuantInputCheck(const converter::Flags *config) {
MS_ASSERT(config != nullptr);
if (!WeightQuantizer::IsPosNum(config->convWeightQuantChannelThreshold)) {
if (!WeightQuantizer::IsPosNum(config->quantWeightChannel)) {
MS_LOG(ERROR) << "convWeightQuantChannelThreshold must be valid pos num.";
return RET_ERROR;
}
if (!WeightQuantizer::IsPosNum(config->quantSize)) {
if (!WeightQuantizer::IsPosNum(config->quantWeightSize)) {
MS_LOG(ERROR) << "quantSize must be valid pos num.";
return RET_ERROR;
}

View File

@ -14,8 +14,8 @@
* limitations under the License.
*/
#ifndef WEIGHT_QUANTIZER_H
#define WEIGHT_QUANTIZER_H
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_WEIGHT_QUANTIZER_H
#define MINDSPORE_LITE_TOOLS_CONVERTER_QUANTIZER_WEIGHT_QUANTIZER_H
#include <memory>
#include <list>
@ -45,6 +45,7 @@ class WeightQuantizer : public Quantizer {
static bool IsPosNum(const std::string &str);
int quant_max{INT8_MAX};
int quant_min{INT8_MIN};
private:
std::unique_ptr<QuantStrategy> mStrategy;
size_t bitNum;

View File

@ -1,26 +0,0 @@
# add shared link library
set(COMMON_SRC
${CMAKE_CURRENT_SOURCE_DIR}/../common/flag_parser.cc
${CMAKE_CURRENT_SOURCE_DIR}/../../src/common/file_utils.cc
${CMAKE_CURRENT_SOURCE_DIR}/../../src/common/utils.cc
)
add_executable(timeprofiler
${CMAKE_CURRENT_SOURCE_DIR}/main.cc
${CMAKE_CURRENT_SOURCE_DIR}/time_profiler.cc
${COMMON_SRC})
if (PLATFORM_ARM32 OR PLATFORM_ARM64)
target_link_libraries(timeprofiler mindspore-lite)
else()
target_link_libraries(timeprofiler mindspore-lite pthread)
endif()
if (PLATFORM_ARM32 OR PLATFORM_ARM64)
install(TARGETS timeprofiler
RUNTIME DESTINATION ${MAIN_DIR}-${COMPONENT_NAME}/time_profiler COMPONENT ${COMPONENT_NAME})
else()
install(TARGETS timeprofiler
RUNTIME DESTINATION ${MAIN_DIR}-${RUN_X86_COMPONENT_NAME}/time_profiler COMPONENT ${RUN_X86_COMPONENT_NAME})
endif()

View File

@ -1,19 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/time_profiler/time_profiler.h"
int main(int argc, const char **argv) { return mindspore::lite::RunTimeProfiler(argc, argv); }

View File

@ -1,415 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/time_profiler/time_profiler.h"
#define __STDC_FORMAT_MACROS
#include <cinttypes>
#undef __STDC_FORMAT_MACROS
#include <cmath>
#include <algorithm>
#include <utility>
#include "include/ms_tensor.h"
#include "src/common/log_adapter.h"
#include "include/context.h"
namespace mindspore {
namespace lite {
int TimeProfiler::GenerateRandomData(size_t size, void *data) {
MS_ASSERT(data != nullptr);
char *castedData = static_cast<char *>(data);
for (size_t i = 0; i < size; i++) {
castedData[i] = static_cast<char>(i);
}
return RET_OK;
}
int TimeProfiler::GenerateInputData() {
for (auto tensor : ms_inputs_) {
MS_ASSERT(tensor != nullptr);
auto input_data = tensor->MutableData();
if (input_data == nullptr) {
MS_LOG(ERROR) << "MallocData for inTensor failed";
std::cerr << "MallocData for inTensor failed" << std::endl;
return RET_ERROR;
}
MS_ASSERT(tensor->GetData() != nullptr);
auto tensor_byte_size = tensor->Size();
auto status = GenerateRandomData(tensor_byte_size, input_data);
if (status != RET_OK) {
MS_LOG(ERROR) << "Generate RandomData for inTensor failed " << status;
std::cerr << "Generate RandomData for inTensor failed " << status << std::endl;
return RET_ERROR;
}
}
return RET_OK;
}
int TimeProfiler::ReadInputFile() {
if (ms_inputs_.empty()) {
return RET_OK;
}
auto inTensor = ms_inputs_.at(0);
MS_ASSERT(inTensor != nullptr);
size_t size;
char *bin_buf = ReadFile(_flags->in_data_path_.c_str(), &size);
if (bin_buf == nullptr) {
MS_LOG(ERROR) << "Read input data failed.";
std::cerr << "Read input data failed." << std::endl;
return RET_ERROR;
}
auto tensor_data_size = inTensor->Size();
if (size != tensor_data_size) {
MS_LOG(ERROR) << "Input binary file size error, required: " << tensor_data_size << " in fact: " << size;
std::cerr << "Input binary file size error, required: " << tensor_data_size << " in fact: " << size << std::endl;
return RET_ERROR;
}
auto input_data = inTensor->MutableData();
memcpy(input_data, bin_buf, tensor_data_size);
delete bin_buf;
return RET_OK;
}
int TimeProfiler::LoadInput() {
ms_inputs_ = session_->GetInputs();
if (_flags->in_data_path_.empty()) {
auto status = GenerateInputData();
if (status != RET_OK) {
MS_LOG(ERROR) << "Generate input data error " << status;
std::cerr << "Generate input data error " << status << std::endl;
return RET_ERROR;
}
} else {
auto status = ReadInputFile();
if (status != RET_OK) {
MS_LOG(ERROR) << "ReadInputFile error " << status;
std::cerr << "ReadInputFile error " << status << std::endl;
return RET_ERROR;
}
}
return RET_OK;
}
int TimeProfiler::InitSession() {
ctx = new (std::nothrow) lite::Context;
if (ctx == nullptr) {
return RET_ERROR;
}
ctx->cpu_bind_mode_ = static_cast<CpuBindMode>(_flags->cpu_bind_mode_);
ctx->device_type_ = lite::DT_CPU;
ctx->thread_num_ = _flags->num_threads_;
ctx->float16_priority = _flags->fp16_priority;
session_ = session::LiteSession::CreateSession(ctx);
if (session_ == nullptr) {
MS_LOG(ERROR) << "New session failed while running.";
std::cerr << "New session failed while running." << std::endl;
return RET_ERROR;
}
return RET_OK;
}
int TimeProfiler::InitCallbackParameter() {
// before callback
before_call_back_ = [&](const std::vector<mindspore::tensor::MSTensor *> &before_inputs,
const std::vector<mindspore::tensor::MSTensor *> &before_outputs,
const session::CallBackParam &callParam) {
if (before_inputs.empty()) {
MS_LOG(INFO) << "The num of beforeInputs is empty";
}
if (before_outputs.empty()) {
MS_LOG(INFO) << "The num of beforeOutputs is empty";
}
if (op_times_by_type_.find(callParam.type_callback_param) == op_times_by_type_.end()) {
op_times_by_type_.insert(std::make_pair(callParam.type_callback_param, std::make_pair(0, 0.0f)));
}
if (op_times_by_name_.find(callParam.name_callback_param) == op_times_by_name_.end()) {
op_times_by_name_.insert(std::make_pair(callParam.name_callback_param, std::make_pair(0, 0.0f)));
}
op_call_times_total_++;
op_begin_ = GetTimeUs();
return true;
};
// after callback
after_call_back_ = [&](const std::vector<mindspore::tensor::MSTensor *> &after_inputs,
const std::vector<mindspore::tensor::MSTensor *> &after_outputs,
const session::CallBackParam &call_param) {
uint64_t opEnd = GetTimeUs();
if (after_inputs.empty()) {
MS_LOG(INFO) << "The num of after inputs is empty";
}
if (after_outputs.empty()) {
MS_LOG(INFO) << "The num of after outputs is empty";
}
float cost = static_cast<float>(opEnd - op_begin_) / 1000.0f;
op_cost_total_ += cost;
op_times_by_type_[call_param.type_callback_param].first++;
op_times_by_type_[call_param.type_callback_param].second += cost;
op_times_by_name_[call_param.name_callback_param].first++;
op_times_by_name_[call_param.name_callback_param].second += cost;
return true;
};
return RET_OK;
}
int TimeProfiler::Init() {
if (this->_flags == nullptr) {
return 1;
}
MS_LOG(INFO) << "ModelPath = " << _flags->model_path_;
MS_LOG(INFO) << "InDataPath = " << _flags->in_data_path_;
MS_LOG(INFO) << "LoopCount = " << _flags->loop_count_;
MS_LOG(INFO) << "NumThreads = " << _flags->num_threads_;
MS_LOG(INFO) << "Fp16Priority = " << _flags->fp16_priority;
if (_flags->num_threads_ < 1) {
MS_LOG(ERROR) << "NumThreads: " << _flags->num_threads_ << " must greater than or equal 1";
std::cerr << "NumThreads: " << _flags->num_threads_ << " must greater than or equal 1" << std::endl;
return RET_ERROR;
}
if (_flags->loop_count_ < 1) {
MS_LOG(ERROR) << "LoopCount: " << _flags->loop_count_ << " must greater than or equal 1";
std::cerr << "LoopCount: " << _flags->loop_count_ << " must greater than or equal 1" << std::endl;
return RET_ERROR;
}
if (_flags->cpu_bind_mode_ == CpuBindMode::MID_CPU) {
MS_LOG(INFO) << "cpuBindMode = MID_CPU";
} else if (_flags->cpu_bind_mode_ == CpuBindMode::HIGHER_CPU) {
MS_LOG(INFO) << "cpuBindMode = HIGHER_CPU";
} else if (_flags->cpu_bind_mode_ == CpuBindMode::NO_BIND) {
MS_LOG(INFO) << "cpuBindMode = NO_BIND";
} else {
MS_LOG(ERROR) << "cpuBindMode Error";
return RET_ERROR;
}
if (_flags->model_path_.empty()) {
MS_LOG(ERROR) << "modelPath is required";
std::cerr << "modelPath is required" << std::endl;
return RET_ERROR;
}
auto status = InitSession();
if (status != RET_OK) {
MS_LOG(ERROR) << "Init session failed.";
std::cerr << "Init session failed." << std::endl;
return RET_ERROR;
}
status = this->LoadInput();
if (status != RET_OK) {
MS_LOG(ERROR) << "Load input failed.";
std::cerr << "Load input failed." << std::endl;
return RET_ERROR;
}
status = InitCallbackParameter();
if (status != RET_OK) {
MS_LOG(ERROR) << "Init callback Parameter failed.";
std::cerr << "Init callback Parameter failed." << std::endl;
return RET_ERROR;
}
return RET_OK;
}
int TimeProfiler::PrintResult(const std::vector<std::string> &title,
const std::map<std::string, std::pair<int, float>> &result) {
std::vector<size_t> columnLenMax(5);
std::vector<std::vector<std::string>> rows;
for (auto &iter : result) {
char stringBuf[5][100] = {};
std::vector<std::string> columns;
size_t len;
len = iter.first.size();
if (len > columnLenMax.at(0)) {
columnLenMax.at(0) = len + 4;
}
columns.push_back(iter.first);
len = snprintf(stringBuf[1], sizeof(stringBuf[1]), "%f", iter.second.second / _flags->loop_count_);
if (len > columnLenMax.at(1)) {
columnLenMax.at(1) = len + 4;
}
columns.emplace_back(stringBuf[1]);
len = snprintf(stringBuf[2], sizeof(stringBuf[2]), "%f", iter.second.second / op_cost_total_);
if (len > columnLenMax.at(2)) {
columnLenMax.at(2) = len + 4;
}
columns.emplace_back(stringBuf[2]);
len = snprintf(stringBuf[3], sizeof(stringBuf[3]), "%d", iter.second.first);
if (len > columnLenMax.at(3)) {
columnLenMax.at(3) = len + 4;
}
columns.emplace_back(stringBuf[3]);
len = snprintf(stringBuf[4], sizeof(stringBuf[4]), "%f", iter.second.second);
if (len > columnLenMax.at(4)) {
columnLenMax.at(4) = len + 4;
}
columns.emplace_back(stringBuf[4]);
rows.push_back(columns);
}
printf("-------------------------------------------------------------------------\n");
for (int i = 0; i < 5; i++) {
auto printBuf = title[i];
if (printBuf.size() > columnLenMax.at(i)) {
columnLenMax.at(i) = printBuf.size();
}
printBuf.resize(columnLenMax.at(i), ' ');
printf("%s\t", printBuf.c_str());
}
printf("\n");
for (size_t i = 0; i < rows.size(); i++) {
for (int j = 0; j < 5; j++) {
auto printBuf = rows[i][j];
printBuf.resize(columnLenMax.at(j), ' ');
printf("%s\t", printBuf.c_str());
}
printf("\n");
}
return RET_OK;
}
int TimeProfiler::RunTimeProfiler() {
uint64_t time_avg = 0;
// Load graph
std::string modelName = _flags->model_path_.substr(_flags->model_path_.find_last_of("/") + 1);
MS_LOG(INFO) << "start reading model file";
size_t size = 0;
char *graphBuf = ReadFile(_flags->model_path_.c_str(), &size);
if (graphBuf == nullptr) {
MS_LOG(ERROR) << "Load graph failed while running " << modelName.c_str();
std::cerr << "Load graph failed while running " << modelName.c_str() << std::endl;
delete graphBuf;
delete session_;
return RET_ERROR;
}
auto model = lite::Model::Import(graphBuf, size);
delete graphBuf;
if (model == nullptr) {
MS_LOG(ERROR) << "Import model file failed while running " << modelName.c_str();
std::cerr << "Import model file failed while running " << modelName.c_str() << std::endl;
delete session_;
return RET_ERROR;
}
auto ret = session_->CompileGraph(model);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Compile graph failed.";
std::cerr << "Compile graph failed." << std::endl;
delete session_;
delete model;
return RET_ERROR;
}
// load input
MS_LOG(INFO) << "start generate input data";
auto status = LoadInput();
if (status != RET_OK) {
MS_LOG(ERROR) << "Generate input data error";
std::cerr << "Generate input data error" << std::endl;
delete session_;
delete model;
return status;
}
// run graph and test
for (int i = 0; i < _flags->loop_count_; i++) {
session_->BindThread(true);
uint64_t run_begin = GetTimeUs();
ret = session_->RunGraph(before_call_back_, after_call_back_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Run graph failed.";
std::cerr << "Run graph failed." << std::endl;
delete session_;
delete model;
return RET_ERROR;
}
auto outputs = session_->GetOutputs();
uint64_t run_end = GetTimeUs();
uint64_t time = run_end - run_begin;
time_avg += time;
session_->BindThread(false);
outputs.clear();
}
time_avg /= _flags->loop_count_;
float runCost = static_cast<float>(time_avg) / 1000.0f;
const std::vector<std::string> per_op_name = {"opName", "avg(ms)", "percent", "calledTimes", "opTotalTime"};
const std::vector<std::string> per_op_type = {"opType", "avg(ms)", "percent", "calledTimes", "opTotalTime"};
PrintResult(per_op_name, op_times_by_name_);
PrintResult(per_op_type, op_times_by_type_);
printf("\n total time: %5.5f ms, kernel cost: %5.5f ms \n\n", runCost, op_cost_total_ / _flags->loop_count_);
printf("-------------------------------------------------------------------------\n");
delete model;
delete session_;
return ret;
}
int RunTimeProfiler(int argc, const char **argv) {
TimeProfilerFlags flags;
Option<std::string> err = flags.ParseFlags(argc, argv);
if (err.IsSome()) {
std::cerr << err.Get() << std::endl;
std::cerr << flags.Usage() << std::endl;
return -1;
}
if (flags.help) {
std::cerr << flags.Usage() << std::endl;
return 0;
}
TimeProfiler time_profiler(&flags);
auto ret = time_profiler.Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init TimeProfile failed.";
std::cerr << "Init TimeProfile failed." << std::endl;
return RET_ERROR;
}
ret = time_profiler.RunTimeProfiler();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Run TimeProfile failed.";
std::cerr << "Run TimeProfile failed." << std::endl;
return RET_ERROR;
}
return RET_OK;
}
} // namespace lite
} // namespace mindspore

View File

@ -1,98 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINNIE_TIMEPROFILE_TIMEPROFILE_H_
#define MINNIE_TIMEPROFILE_TIMEPROFILE_H_
#include <getopt.h>
#include <signal.h>
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include <utility>
#include "include/lite_session.h"
#include "tools/common/flag_parser.h"
#include "src/common/file_utils.h"
#include "src/common/utils.h"
#include "include/model.h"
namespace mindspore {
namespace lite {
class MS_API TimeProfilerFlags : public virtual FlagParser {
public:
TimeProfilerFlags() {
AddFlag(&TimeProfilerFlags::model_path_, "modelPath", "Input model path", "");
AddFlag(&TimeProfilerFlags::in_data_path_, "inDataPath", "Input data path, if not set, use random input", "");
AddFlag(&TimeProfilerFlags::cpu_bind_mode_, "cpuBindMode",
"Input -1 for MID_CPU, 1 for HIGHER_CPU, 0 for NO_BIND, defalut value: 1", 1);
AddFlag(&TimeProfilerFlags::loop_count_, "loopCount", "Run loop count", 10);
AddFlag(&TimeProfilerFlags::num_threads_, "numThreads", "Run threads number", 2);
AddFlag(&TimeProfilerFlags::fp16_priority, "fp16Priority", "Run fp16 ops prior", false);
}
~TimeProfilerFlags() override = default;
public:
std::string model_path_;
std::string in_data_path_;
int cpu_bind_mode_ = 1;
int loop_count_;
int num_threads_;
bool fp16_priority;
};
class MS_API TimeProfiler {
public:
explicit TimeProfiler(TimeProfilerFlags *flags) : _flags(flags) {}
~TimeProfiler() {
if (ctx != nullptr) {
delete ctx;
}
}
int Init();
int RunTimeProfiler();
private:
int GenerateRandomData(size_t size, void *data);
int GenerateInputData();
int LoadInput();
int ReadInputFile();
int InitCallbackParameter();
int InitSession();
int PrintResult(const std::vector<std::string> &title, const std::map<std::string, std::pair<int, float>> &result);
private:
Context *ctx = nullptr;
TimeProfilerFlags *_flags;
std::vector<mindspore::tensor::MSTensor *> ms_inputs_;
session::LiteSession *session_;
// callback parameters
uint64_t op_begin_ = 0;
int op_call_times_total_ = 0;
float op_cost_total_ = 0.0f;
std::map<std::string, std::pair<int, float>> op_times_by_type_;
std::map<std::string, std::pair<int, float>> op_times_by_name_;
session::KernelCallBack before_call_back_;
session::KernelCallBack after_call_back_;
};
int MS_API RunTimeProfiler(int argc, const char **argv);
} // namespace lite
} // namespace mindspore
#endif // MINNIE_TIMEPROFILE_TIMEPROFILE_H_