!1888 Add cpu kernel implement of sparse adam

Merge pull request !1888 from YuJianfeng/adam
This commit is contained in:
mindspore-ci-bot 2020-06-10 10:38:31 +08:00 committed by Gitee
commit d6cc7089fc
8 changed files with 435 additions and 9 deletions

View File

@ -559,21 +559,24 @@ void DeduplicateIndexedSlices(const SparseGradient &origin_sparse_grad, SparseGr
size_t unique_indices_size = 0;
for (size_t i = 0; i < origin_sparse_grad.indices_size_; ++i) {
int index = origin_sparse_grad.indices_[i];
if (index < 0 || (size_t)index >= first_dim) {
if (index < 0 || IntToSize(index) >= first_dim) {
continue;
}
auto iter = index_map.find(index);
if (iter == index_map.end()) {
index_map[index] = unique_indices_size;
unique_grad->indices_[unique_indices_size] = index;
for (size_t j = unique_indices_size * outer_dim, k = i * outer_dim; j < (unique_indices_size + 1) * outer_dim;
++j, ++k) {
size_t start_index = unique_indices_size * outer_dim;
size_t end_index = start_index + outer_dim;
for (size_t j = start_index, k = i * outer_dim; j < end_index; ++j, ++k) {
unique_grad->value_[j] = origin_sparse_grad.value_[k];
}
unique_indices_size++;
} else {
size_t first_index = iter->second;
for (size_t j = first_index * outer_dim, k = i * outer_dim; j < (first_index + 1) * outer_dim; ++j, ++k) {
size_t start_index = first_index * outer_dim;
size_t end_index = start_index + outer_dim;
for (size_t j = start_index, k = i * outer_dim; j < end_index; ++j, ++k) {
unique_grad->value_[j] += origin_sparse_grad.value_[k];
}
}

View File

@ -49,6 +49,7 @@ const char AXIS[] = "axis";
const char BEGIN[] = "begin";
const char END[] = "end";
const char SIZE[] = "size";
const char USE_NESTEROV[] = "use_nesterov";
class CPUKernel : public kernel::KernelMod {
public:

View File

@ -0,0 +1,131 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/sparse_apply_adam_cpu_kernel.h"
#include "device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
namespace {
constexpr size_t kSparseApplyAdamInputSize = 11;
} // namespace
void SparseApplyAdamCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
std::vector<size_t> var_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
std::vector<size_t> m_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
std::vector<size_t> v_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
std::vector<size_t> grad_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 9);
std::vector<size_t> indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 10);
if (!IsSameShape(var_shape, m_shape)) {
MS_LOG(EXCEPTION) << "var and m should have the same shape";
}
if (!IsSameShape(var_shape, v_shape)) {
MS_LOG(EXCEPTION) << "var and v should have the same shape";
}
if (var_shape.empty()) {
MS_LOG(EXCEPTION) << "var must be at least 1D";
}
var_first_dim_size_ = var_shape[0];
for (size_t i = 1; i < var_shape.size(); ++i) {
if (var_shape[i] != grad_shape[i]) {
MS_LOG(EXCEPTION) << "The shape of var and grad must equal in dimension " << i;
}
var_outer_dim_size_ *= var_shape[i];
}
if (indices_shape.size() != 1) {
MS_LOG(EXCEPTION) << "indices must be 1D";
}
indices_size_ = indices_shape[0];
if (grad_shape[0] != indices_size_) {
MS_LOG(ERROR) << "The first dimension of grad shape must be equal to indices";
}
if (AnfAlgo::HasNodeAttr(USE_NESTEROV, kernel_node)) {
use_nesterov_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "use_nesterov");
}
}
void SparseApplyAdamCPUKernel::UpdateSparseMomentum(const SparseGradient &unique_sparse_grad, float *m, float *m_t,
float *v, float beta1, float beta2) {
MS_EXCEPTION_IF_NULL(m);
MS_EXCEPTION_IF_NULL(m_t);
MS_EXCEPTION_IF_NULL(v);
for (size_t i = 0; i < unique_sparse_grad.indices_size_; ++i) {
int index = unique_sparse_grad.indices_[i];
if (index < 0 || IntToSize(index) >= var_first_dim_size_) {
MS_LOG(EXCEPTION) << "Index " << index << " in indices is out of range after unique process";
}
size_t start_index = var_outer_dim_size_ * index;
size_t end_index = start_index + var_outer_dim_size_;
for (size_t j = start_index, k = var_outer_dim_size_ * i; j < end_index; ++j, ++k) {
auto summed_grad = unique_sparse_grad.value_[k];
m[j] += (1 - beta1) * summed_grad;
v[j] += (1 - beta2) * summed_grad * summed_grad;
if (use_nesterov_) {
m_t[j] = m[j] * beta1 + (1 - beta1) * summed_grad;
}
}
}
}
bool SparseApplyAdamCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> & /*outputs*/) {
if (inputs.size() < kSparseApplyAdamInputSize) {
MS_LOG(EXCEPTION) << "Error input size!";
}
auto var = reinterpret_cast<float *>(inputs[0]->addr);
auto m = reinterpret_cast<float *>(inputs[1]->addr);
auto v = reinterpret_cast<float *>(inputs[2]->addr);
auto beta1_power = reinterpret_cast<float *>(inputs[3]->addr)[0];
if (beta1_power == 1) {
MS_LOG(EXCEPTION) << "The beta1_power should not be 1";
}
auto beta2_power = reinterpret_cast<float *>(inputs[4]->addr)[0];
auto lr = reinterpret_cast<float *>(inputs[5]->addr)[0];
auto beta1 = reinterpret_cast<float *>(inputs[6]->addr)[0];
auto beta2 = reinterpret_cast<float *>(inputs[7]->addr)[0];
auto epsilon = reinterpret_cast<float *>(inputs[8]->addr)[0];
auto grad = reinterpret_cast<float *>(inputs[9]->addr);
auto indices = reinterpret_cast<int *>(inputs[10]->addr);
std::vector<float> new_grad;
new_grad.reserve(indices_size_ * var_outer_dim_size_);
std::vector<int> new_indices;
new_indices.reserve(indices_size_);
SparseGradient unique_sparse_grad({new_grad.data(), new_indices.data(), indices_size_});
DeduplicateIndexedSlices(SparseGradient({grad, indices, indices_size_}), &unique_sparse_grad, var_first_dim_size_,
var_outer_dim_size_);
size_t total_dim_size = var_first_dim_size_ * var_outer_dim_size_;
// Update momentum
lr = lr * std::sqrt(1 - beta2_power) / (1 - beta1_power);
for (size_t i = 0; i < total_dim_size; ++i) {
m[i] *= beta1;
v[i] *= beta2;
}
std::vector<float> m_t(m, m + total_dim_size);
UpdateSparseMomentum(unique_sparse_grad, m, m_t.data(), v, beta1, beta2);
// Update weight
if (use_nesterov_) {
m = m_t.data();
}
for (size_t i = 0; i < total_dim_size; ++i) {
var[i] -= lr * m[i] / (std::sqrt(v[i]) + epsilon);
}
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,66 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
#include "kernel/common_utils.h"
namespace mindspore {
namespace kernel {
class SparseApplyAdamCPUKernel : public CPUKernel {
public:
SparseApplyAdamCPUKernel() = default;
~SparseApplyAdamCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
void UpdateSparseMomentum(const SparseGradient &unique_sparse_grad, float *m, float *m_t, float *v, float beta1,
float beta2);
size_t indices_size_{0};
size_t var_first_dim_size_{0};
size_t var_outer_dim_size_{1};
bool use_nesterov_{false};
};
MS_REG_CPU_KERNEL(SparseApplyAdam,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
SparseApplyAdamCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_CPU_KERNEL_H_

View File

@ -84,19 +84,22 @@ bool SparseApplyFtrlCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inp
auto grad = reinterpret_cast<float *>(inputs[3]->addr);
auto indices = reinterpret_cast<int *>(inputs[4]->addr);
std::vector<float> new_grad(indices_size_ * var_outer_dim_size_);
std::vector<int> new_indices(indices_size_);
std::vector<float> new_grad;
new_grad.reserve(indices_size_ * var_outer_dim_size_);
std::vector<int> new_indices;
new_indices.reserve(indices_size_);
SparseGradient unique_sparse_grad({new_grad.data(), new_indices.data(), indices_size_});
DeduplicateIndexedSlices(SparseGradient({grad, indices, indices_size_}), &unique_sparse_grad, var_first_dim_size_,
var_outer_dim_size_);
for (size_t i = 0; i < unique_sparse_grad.indices_size_; ++i) {
int index = unique_sparse_grad.indices_[i];
if (index < 0 || (size_t)index >= var_first_dim_size_) {
if (index < 0 || IntToSize(index) >= var_first_dim_size_) {
MS_LOG(EXCEPTION) << "Index " << index << " in indices is out of range after unique process";
}
for (size_t j = var_outer_dim_size_ * index, k = var_outer_dim_size_ * i; j < var_outer_dim_size_ * (index + 1);
++j, ++k) {
size_t start_index = var_outer_dim_size_ * index;
size_t end_index = start_index + var_outer_dim_size_;
for (size_t j = start_index, k = var_outer_dim_size_ * i; j < end_index; ++j, ++k) {
auto summed_grad = unique_sparse_grad.value_[k];
auto accum_new = accum[j] + summed_grad * summed_grad;
if (lr_power_ == -0.5) {

View File

@ -0,0 +1,113 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/sparse_apply_lazy_adam_cpu_kernel.h"
#include "kernel/common_utils.h"
#include "device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
namespace {
constexpr size_t kSparseApplyLazyAdamInputSize = 11;
} // namespace
void SparseApplyLazyAdamCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
std::vector<size_t> var_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
std::vector<size_t> m_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
std::vector<size_t> v_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
std::vector<size_t> grad_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 9);
std::vector<size_t> indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 10);
if (!IsSameShape(var_shape, m_shape)) {
MS_LOG(EXCEPTION) << "var and m should have the same shape";
}
if (!IsSameShape(var_shape, v_shape)) {
MS_LOG(EXCEPTION) << "var and v should have the same shape";
}
if (var_shape.empty()) {
MS_LOG(EXCEPTION) << "var must be at least 1D";
}
var_first_dim_size_ = var_shape[0];
for (size_t i = 1; i < var_shape.size(); ++i) {
if (var_shape[i] != grad_shape[i]) {
MS_LOG(EXCEPTION) << "The shape of var and grad must equal in dimension " << i;
}
var_outer_dim_size_ *= var_shape[i];
}
if (indices_shape.size() != 1) {
MS_LOG(EXCEPTION) << "indices must be 1D";
}
indices_size_ = indices_shape[0];
if (grad_shape[0] != indices_size_) {
MS_LOG(ERROR) << "The first dimension of grad shape must be equal to indices";
}
if (AnfAlgo::HasNodeAttr(USE_NESTEROV, kernel_node)) {
use_nesterov_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "use_nesterov");
}
}
bool SparseApplyLazyAdamCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> & /*outputs*/) {
if (inputs.size() < kSparseApplyLazyAdamInputSize) {
MS_LOG(EXCEPTION) << "Error input size!";
}
auto var = reinterpret_cast<float *>(inputs[0]->addr);
auto m = reinterpret_cast<float *>(inputs[1]->addr);
auto v = reinterpret_cast<float *>(inputs[2]->addr);
auto beta1_power = reinterpret_cast<float *>(inputs[3]->addr)[0];
if (beta1_power == 1) {
MS_LOG(EXCEPTION) << "The beta1_power should not be 1";
}
auto beta2_power = reinterpret_cast<float *>(inputs[4]->addr)[0];
auto lr = reinterpret_cast<float *>(inputs[5]->addr)[0];
auto beta1 = reinterpret_cast<float *>(inputs[6]->addr)[0];
auto beta2 = reinterpret_cast<float *>(inputs[7]->addr)[0];
auto epsilon = reinterpret_cast<float *>(inputs[8]->addr)[0];
auto grad = reinterpret_cast<float *>(inputs[9]->addr);
auto indices = reinterpret_cast<int *>(inputs[10]->addr);
std::vector<float> new_grad;
new_grad.reserve(indices_size_ * var_outer_dim_size_);
std::vector<int> new_indices;
new_indices.reserve(indices_size_);
SparseGradient unique_sparse_grad({new_grad.data(), new_indices.data(), indices_size_});
DeduplicateIndexedSlices(SparseGradient({grad, indices, indices_size_}), &unique_sparse_grad, var_first_dim_size_,
var_outer_dim_size_);
lr = lr * std::sqrt(1 - beta2_power) / (1 - beta1_power);
for (size_t i = 0; i < unique_sparse_grad.indices_size_; ++i) {
int index = unique_sparse_grad.indices_[i];
if (index < 0 || IntToSize(index) >= var_first_dim_size_) {
MS_LOG(EXCEPTION) << "Index " << index << " in indices is out of range";
}
size_t start_index = var_outer_dim_size_ * index;
size_t end_index = start_index + var_outer_dim_size_;
for (size_t j = start_index, k = var_outer_dim_size_ * i; j < end_index; ++j, ++k) {
auto summed_grad = unique_sparse_grad.value_[k];
m[j] = beta1 * m[j] + (1 - beta1) * summed_grad;
v[j] = beta2 * v[j] + (1 - beta2) * summed_grad * summed_grad;
if (use_nesterov_) {
var[j] -= lr * (m[j] * beta1 + (1 - beta1) * summed_grad) / (std::sqrt(v[j]) + epsilon);
} else {
var[j] -= lr * m[j] / (std::sqrt(v[j]) + epsilon);
}
}
}
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,63 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_LAZY_ADAM_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_LAZY_ADAM_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/cpu_kernel.h"
#include "kernel/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class SparseApplyLazyAdamCPUKernel : public CPUKernel {
public:
SparseApplyLazyAdamCPUKernel() = default;
~SparseApplyLazyAdamCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
size_t indices_size_{0};
size_t var_first_dim_size_{0};
size_t var_outer_dim_size_{1};
bool use_nesterov_{false};
};
MS_REG_CPU_KERNEL(SparseApplyLazyAdam,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
SparseApplyLazyAdamCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_LAZY_ADAM_CPU_KERNEL_H_

View File

@ -0,0 +1,46 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
import mindspore.common.dtype as mstype
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.sparse_apply_adam = P.SparseApplyAdam()
self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var")
self.m = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="m")
self.v = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="v")
def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices):
out = self.sparse_apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2, epsilon,
grad, indices)
return out
def test_net():
gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32))
indices = Tensor([0, 1, 2], mstype.int32)
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
sparse_apply_adam = Net()
output = sparse_apply_adam(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient, indices)
print(output[0].asnumpy())