forked from mindspore-Ecosystem/mindspore
fix comments related with dataset
This commit is contained in:
parent
1de823f1eb
commit
d6854000b4
|
@ -1,7 +1,7 @@
|
|||
mindspore.ParameterTuple
|
||||
========================
|
||||
|
||||
.. py:class:: mindspore.ParameterTuple(iterable)
|
||||
.. py:class:: mindspore.ParameterTuple
|
||||
|
||||
继承于tuple,用于管理多个Parameter。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.nn.GraphCell
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.nn.GraphCell(graph)
|
||||
.. py:class:: mindspore.nn.GraphCell(graph, params_init=None)
|
||||
|
||||
运行从MindIR加载的计算图。
|
||||
|
||||
|
|
|
@ -49,3 +49,6 @@ mindspore.nn.HausdorffDistance
|
|||
**异常:**
|
||||
|
||||
- **ValueError** - 输入的数量不等于3。
|
||||
- **TypeError** - label_idx 的数据类型不是int或float。
|
||||
- **ValueError** - label_idx 的值不在y_pred或y中。
|
||||
- **ValueError** - y_pred 和 y 的shape不同。
|
||||
|
|
|
@ -22,7 +22,7 @@ mindspore.nn.Loss
|
|||
|
||||
**异常:**
|
||||
|
||||
RuntimeError:样本总数为0。
|
||||
- **RuntimeError** - 样本总数为0。
|
||||
|
||||
.. py:method:: update(*inputs)
|
||||
|
||||
|
|
|
@ -14,7 +14,3 @@ mindspore.nn.get_metric_fn
|
|||
**返回:**
|
||||
|
||||
metric对象,metric方法的类实例。
|
||||
|
||||
**异常:**
|
||||
|
||||
- **TypeError** - 入参 `metric` 的类型不是None, dict或set。
|
||||
|
|
|
@ -1144,7 +1144,8 @@ class Cell(Cell_):
|
|||
Iteration, all parameters at the cell.
|
||||
|
||||
Examples:
|
||||
>>> net = Net()
|
||||
>>> from mindspore import nn
|
||||
>>> net = nn.Dense(3, 4)
|
||||
>>> parameters = []
|
||||
>>> for item in net.get_parameters():
|
||||
... parameters.append(item)
|
||||
|
@ -1178,7 +1179,8 @@ class Cell(Cell_):
|
|||
Iteration, all the names and corresponding parameters in the cell.
|
||||
|
||||
Examples:
|
||||
>>> n = Net()
|
||||
>>> from mindspore import nn
|
||||
>>> n = nn.Dense(3, 4)
|
||||
>>> names = []
|
||||
>>> for m in n.parameters_and_names():
|
||||
... if m[0]:
|
||||
|
@ -1218,7 +1220,14 @@ class Cell(Cell_):
|
|||
Iteration, all the child cells and corresponding names in the cell.
|
||||
|
||||
Examples:
|
||||
>>> n = Net()
|
||||
>>> from mindspore import nn
|
||||
>>> class Net(nn.Cell):
|
||||
... def __init__(self):
|
||||
... super(Net, self).__init__()
|
||||
... self.conv = nn.Conv2d(3, 64, 3)
|
||||
... def construct(self, x):
|
||||
... out = self.conv(x)
|
||||
... return out
|
||||
>>> names = []
|
||||
>>> for m in n.cells_and_names():
|
||||
... if m[0]:
|
||||
|
@ -1988,7 +1997,6 @@ class GraphCell(Cell):
|
|||
TypeError: If the `params_init` is not a dict.
|
||||
TypeError: If the key of the `params_init` is not a str.
|
||||
TypeError: If the value of the `params_init` is neither a Tensor nor a Parameter.
|
||||
ValueError: If the initial value's dtype and shape are not consistent with the parameter would be inited.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
|
|
@ -34,9 +34,6 @@ class Perplexity(Metric):
|
|||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Note:
|
||||
The method `update` must be called with the form `update(preds, labels)`.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import nn, Tensor
|
||||
|
|
|
@ -273,6 +273,7 @@ class Lamb(Optimizer):
|
|||
|
||||
Examples:
|
||||
>>> from mindspore import nn, Model
|
||||
>>> from mindspore.nn import learning_rate_schedule
|
||||
>>>
|
||||
>>> net = Net()
|
||||
>>> #1) All parameters use the same learning rate and weight decay
|
||||
|
|
|
@ -398,8 +398,10 @@ class GetNextSingleOp(Cell):
|
|||
Examples:
|
||||
>>> import mindspore
|
||||
>>> from mindspore import ops, nn
|
||||
>>> from mindspore import dataset as ds
|
||||
>>>
|
||||
>>> train_dataset = create_custom_dataset()
|
||||
>>> data_path = "/path/to/MNIST_Data/train/"
|
||||
>>> train_dataset = ds.MnistDataset(data_path, num_samples=10)
|
||||
>>> dataset_helper = mindspore.DatasetHelper(train_dataset, dataset_sink_mode=True)
|
||||
>>> dataset = dataset_helper.iter.dataset
|
||||
>>> dataset_types, dataset_shapes = dataset_helper.types_shapes()
|
||||
|
@ -409,7 +411,7 @@ class GetNextSingleOp(Cell):
|
|||
>>> relu = ops.ReLU()
|
||||
>>> result = relu(data).asnumpy()
|
||||
>>> print(result.shape)
|
||||
(32, 1, 32, 32)
|
||||
(28, 28, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, dataset_types, dataset_shapes, queue_name):
|
||||
|
|
|
@ -3471,7 +3471,9 @@ class GetNext(Primitive):
|
|||
Examples:
|
||||
>>> import mindspore
|
||||
>>> from mindspore import ops
|
||||
>>> train_dataset = create_custom_dataset()
|
||||
>>> from mindspore import dataset as ds
|
||||
>>> data_path = "/path/to/MNIST_Data/train/"
|
||||
>>> train_dataset = ds.MnistDataset(data_path, num_samples=10)
|
||||
>>> dataset_helper = mindspore.DatasetHelper(train_dataset, dataset_sink_mode=True)
|
||||
>>> dataset = dataset_helper.iter.dataset
|
||||
>>> dataset_types, dataset_shapes = dataset_helper.types_shapes()
|
||||
|
@ -3481,7 +3483,7 @@ class GetNext(Primitive):
|
|||
>>> relu = ops.ReLU()
|
||||
>>> result = relu(data).asnumpy()
|
||||
>>> print(result.shape)
|
||||
(32, 1, 32, 32)
|
||||
(28, 28, 1)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
|
@ -85,21 +85,24 @@ class Callback:
|
|||
`Callback <https://www.mindspore.cn/docs/programming_guide/zh-CN/master/custom_debugging_info.html>`_.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Model, nn
|
||||
>>> from mindspore.train.callback import Callback
|
||||
>>> from mindspore import dataset as ds
|
||||
>>> class Print_info(Callback):
|
||||
... def step_end(self, run_context):
|
||||
... cb_params = run_context.original_args()
|
||||
... print("step_num: ", cb_params.cur_step_num)
|
||||
>>>
|
||||
>>> print_cb = Print_info()
|
||||
>>> dataset = create_custom_dataset()
|
||||
>>> net = Net()
|
||||
>>> data = {"x": np.float32(np.random.rand(64, 10)), "y": np.random.randint(0, 5, (64,))}
|
||||
>>> dataset = ds.NumpySlicesDataset(data=data).batch(32)
|
||||
>>> net = nn.Dense(10, 5)
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
>>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim)
|
||||
>>> model.train(1, dataset, callbacks=print_cb)
|
||||
step_num: 1
|
||||
step_num: 2
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
|
|
|
@ -32,9 +32,11 @@ class LearningRateScheduler(Callback):
|
|||
learning_rate_function (Function): The function about how to change the learning rate during training.
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Model
|
||||
>>> from mindspore.train.callback import LearningRateScheduler
|
||||
>>> import mindspore.nn as nn
|
||||
>>> from mindspore import dataset as ds
|
||||
...
|
||||
>>> def learning_rate_function(lr, cur_step_num):
|
||||
... if cur_step_num%1000 == 0:
|
||||
|
@ -43,12 +45,13 @@ class LearningRateScheduler(Callback):
|
|||
...
|
||||
>>> lr = 0.1
|
||||
>>> momentum = 0.9
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> net = nn.Dense(10, 5)
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
>>> optim = nn.Momentum(net.trainable_params(), learning_rate=lr, momentum=momentum)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim)
|
||||
...
|
||||
>>> dataset = create_custom_dataset("custom_dataset_path")
|
||||
>>> data = {"x": np.float32(np.random.rand(64, 10)), "y": np.random.randint(0, 5, (64,))}
|
||||
>>> dataset = ds.NumpySlicesDataset(data=data).batch(32)
|
||||
>>> model.train(1, dataset, callbacks=[LearningRateScheduler(learning_rate_function)],
|
||||
... dataset_sink_mode=False)
|
||||
"""
|
||||
|
|
|
@ -157,12 +157,15 @@ def connect_network_with_dataset(network, dataset_helper):
|
|||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import DatasetHelper
|
||||
>>> from mindspore import DatasetHelper, nn, connect_network_with_dataset
|
||||
>>> from mindspore import dataset as ds
|
||||
>>>
|
||||
>>> # call create_dataset function to create a regular dataset, refer to mindspore.dataset
|
||||
>>> train_dataset = create_custom_dataset()
|
||||
>>> data = {"x": np.float32(np.random.rand(64, 10)), "y": np.random.randint(0, 5, (64,))}
|
||||
>>> train_dataset = ds.NumpySlicesDataset(data=data).batch(32)
|
||||
>>> dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=True)
|
||||
>>> net = Net()
|
||||
>>> net = nn.Dense(10, 5)
|
||||
>>> net_with_get_next = connect_network_with_dataset(net, dataset_helper)
|
||||
"""
|
||||
dataset_iter = dataset_helper.iter
|
||||
|
@ -236,12 +239,15 @@ class DatasetHelper:
|
|||
epoch_num (int): The number of passes of the entire dataset to be sent. Default: 1.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore import DatasetHelper
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import DatasetHelper, nn
|
||||
>>> from mindspore import dataset as ds
|
||||
>>>
|
||||
>>> train_dataset = create_custom_dataset()
|
||||
>>> data = {"x": np.float32(np.random.rand(64, 10)), "y": np.random.randint(0, 5, (64,))}
|
||||
>>> train_dataset = ds.NumpySlicesDataset(data=data).batch(32)
|
||||
>>> set_helper = DatasetHelper(train_dataset, dataset_sink_mode=False)
|
||||
>>>
|
||||
>>> net = Net()
|
||||
>>> net = nn.Dense(10, 5)
|
||||
>>> # Object of DatasetHelper is iterable
|
||||
>>> for next_element in set_helper:
|
||||
... # `next_element` includes data and label, using data to run the net
|
||||
|
|
|
@ -117,7 +117,7 @@ class Model:
|
|||
- "O2": Cast network to float16, keep BatchNorm run in float32, using dynamic loss scale.
|
||||
- "O3": Cast network to float16, the BatchNorm is also cast to float16, loss scale will not be used.
|
||||
- auto: Set level to recommended level in different devices. Set level to "O2" on GPU, set
|
||||
level to "O3" on Ascend. The recommended level is chosen by the export experience, not applicable to all
|
||||
level to "O3" on Ascend. The recommended level is chosen by the expert experience, not applicable to all
|
||||
scenarios. User should specify the level for special network.
|
||||
|
||||
"O2" is recommended on GPU, "O3" is recommended on Ascend.
|
||||
|
@ -165,8 +165,9 @@ class Model:
|
|||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
>>> # For details about how to build the dataset, please refer to the tutorial
|
||||
>>> # document on the official website.
|
||||
>>> # For details about how to build the dataset, please refer to the function `create_dataset` in tutorial
|
||||
>>> # document on the official website:
|
||||
>>> # https://www.mindspore.cn/tutorials/zh-CN/master/quick_start.html
|
||||
>>> dataset = create_custom_dataset()
|
||||
>>> model.train(2, dataset)
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue