!2093 GPU add argmaxwithvalue

Merge pull request !2093 from VectorSL/argmaxwithvalue
This commit is contained in:
mindspore-ci-bot 2020-06-15 14:18:37 +08:00 committed by Gitee
commit d4a7c87b22
5 changed files with 287 additions and 0 deletions

View File

@ -0,0 +1,30 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/arrays/argmaxwithvalue_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_TWO(
ArgMaxWithValue,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
ArgmaxWithValueGpuKernel, float, int)
MS_REG_GPU_KERNEL_TWO(
ArgMaxWithValue,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat16),
ArgmaxWithValueGpuKernel, half, int)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,109 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_ARGMAXWITHVALUEGPUKERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_ARGMAXWITHVALUEGPUKERNEL_H_
#include <vector>
#include "kernel/gpu/gpu_kernel.h"
#include "kernel/gpu/gpu_kernel_factory.h"
#include "kernel/gpu/cuda_impl/argmaxwithvalue_impl.cuh"
namespace mindspore {
namespace kernel {
template <typename T, typename S>
class ArgmaxWithValueGpuKernel : public GpuKernel {
public:
ArgmaxWithValueGpuKernel()
: input_size_(0),
output_size_(0),
workspace_size_(0),
axis_(0),
dims_(1),
bound_(0),
outerSize_(0),
innerSize_(0) {}
~ArgmaxWithValueGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *input = GetDeviceAddress<T>(inputs, 0);
T *output = GetDeviceAddress<T>(outputs, 1);
S *index = GetDeviceAddress<S>(outputs, 0);
CalArgmaxWithValue(input_size_ / sizeof(T), input, bound_, outerSize_, innerSize_, axis_, dims_, index, output,
reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 1);
dims_ = shape_.size();
axis_ = GetAttr<int>(kernel_node, "axis");
if (axis_ < 0) {
axis_ += dims_;
}
input_size_ = sizeof(T);
for (auto x : shape_) {
input_size_ *= x;
}
output_size_ = sizeof(S);
for (auto x : output_shape) {
output_size_ *= x;
}
bound_ = shape_[axis_];
outerSize_ = 1;
for (int i = axis_ - 1; i >= 0; i--) {
outerSize_ *= shape_[i];
}
innerSize_ = 1;
for (int i = axis_ + 1; i < dims_; i++) {
innerSize_ *= shape_[i];
}
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
output_size_list_.push_back(output_size_);
output_size_list_.push_back(output_size_ / sizeof(S) * sizeof(T));
}
private:
size_t input_size_;
size_t output_size_;
size_t workspace_size_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
std::vector<size_t> shape_;
int axis_;
int dims_;
int bound_;
int outerSize_;
int innerSize_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_ARGMAXWITHVALUEGPUKERNEL_H_

View File

@ -0,0 +1,58 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "argmaxwithvalue_impl.cuh"
#include "device/gpu/cuda_common.h"
#include "include/cuda_fp16.h"
template <typename T, typename S>
__global__ void ArgmaxWithValue(size_t size, const T* input, const int bound, int outerSize, int innerSize,
S* index, T* output) {
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
for (int i = 0; i < outerSize; i++) {
int inputOutterOffset = i * innerSize * bound;
int outputOutterOffset = i * innerSize;
for (int j = 0; j < innerSize; j++) {
auto outputInnerOffset = outputOutterOffset + j;
S idx = 0;
T maxData = input[j + inputOutterOffset];
for (S c = 0; c < bound; c++) {
int offset = j + c * innerSize;
auto inputData = input[inputOutterOffset + offset];
idx = inputData > maxData ? c : idx;
maxData = inputData > maxData ? inputData : maxData;
}
output[outputInnerOffset] = maxData;
index[outputInnerOffset] = idx;
}
}
}
return;
}
template <typename T, typename S>
void CalArgmaxWithValue(size_t size, const T* input, const int bound_, const int outerSize_, const int innerSize_,
int axis_, int dims_, S* index, T* output, cudaStream_t cuda_stream) {
ArgmaxWithValue<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, bound_, outerSize_, innerSize_,
index, output);
return;
}
template void CalArgmaxWithValue<float, int>(size_t size, const float* input, const int bound_, const int outerSize_,
const int innerSize_, int axis_, int dims_, int* index, float* output,
cudaStream_t cuda_stream);
template void CalArgmaxWithValue<half, int>(size_t size, const half* input, const int bound_, const int outerSize_,
const int innerSize_, int axis_, int dims_, int* index, half* output,
cudaStream_t cuda_stream);

View File

@ -0,0 +1,22 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ARGMAXWITHVALUE_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ARGMAXWITHVALUE_H_
template <typename T, typename S>
void CalArgmaxWithValue(size_t size, const T* input, const int bound_, const int outerSize_, const int innerSize_,
int axis_, int dims_, S* index, T* output, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_ARGMAXWITHVALUE_H_

View File

@ -0,0 +1,68 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class NetArgmaxWithValue(nn.Cell):
def __init__(self):
super(NetArgmaxWithValue, self).__init__()
axis1 = 0
axis2 = -1
self.argmax1 = P.ArgMaxWithValue(axis1)
self.argmax2 = P.ArgMaxWithValue(axis2)
self.argmax3 = P.ArgMaxWithValue()
def construct(self, x):
return (self.argmax1(x), self.argmax2(x), self.argmax3(x))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_argmaxwithvalue():
x = Tensor(np.array([[1., 20., 5.],
[67., 8., 9.],
[130., 24., 15.],
[0.3, -0.4, -15.]]).astype(np.float32))
expect1 = np.array([2, 2, 2]).astype(np.float32)
expect2 = np.array([1, 0, 0, 0]).astype(np.float32)
expect11 = np.array([130, 24, 15]).astype(np.float32)
expect22 = np.array([20, 67, 130, 0.3]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
argmax = NetArgmaxWithValue()
output = argmax(x)
assert (output[0][0].asnumpy() == expect1).all()
assert (output[0][1].asnumpy() == expect11).all()
assert (output[1][0].asnumpy() == expect2).all()
assert (output[1][1].asnumpy() == expect22).all()
assert (output[2][0].asnumpy() == expect1).all()
assert (output[2][1].asnumpy() == expect11).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
argmax = NetArgmaxWithValue()
output = argmax(x)
assert (output[0][0].asnumpy() == expect1).all()
assert (output[0][1].asnumpy() == expect11).all()
assert (output[1][0].asnumpy() == expect2).all()
assert (output[1][1].asnumpy() == expect22).all()
assert (output[2][0].asnumpy() == expect1).all()
assert (output[2][1].asnumpy() == expect11).all()