clean pylint warning in st/ops/ascend

This commit is contained in:
jinyaohui 2020-05-11 20:59:30 +08:00
parent 7068e708de
commit d40e89b1bc
103 changed files with 954 additions and 588 deletions

View File

@ -20,18 +20,23 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(enable_task_sink=True) context.set_context(enable_task_sink=True)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.add = P.TensorAdd() self.add = P.TensorAdd()
def construct(self, x, y): def construct(self, x, y):
return self.add(x, y) return self.add(x, y)
x = np.ones([1,3,3,4]).astype(np.float32)
y = np.ones([1,3,3,4]).astype(np.float32) x = np.ones([1, 3, 3, 4]).astype(np.float32)
y = np.ones([1, 3, 3, 4]).astype(np.float32)
def test_net(): def test_net():
add = Net() add = Net()

View File

@ -20,15 +20,19 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.add = P.AddN() self.add = P.AddN()
def construct(self, x, y): def construct(self, x, y):
return self.add((x, y)) return self.add((x, y))
def test_net(): def test_net():
x = np.random.randn(1, 3, 3, 4).astype(np.float32) x = np.random.randn(1, 3, 3, 4).astype(np.float32)
y = np.random.randn(1, 3, 3, 4).astype(np.float32) y = np.random.randn(1, 3, 3, 4).astype(np.float32)

View File

@ -18,97 +18,110 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.expand_dims = P.ExpandDims()
def construct(self, tensor, dim): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
return self.expand_dims(tensor, dim)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.expand_dims = P.ExpandDims()
def construct(self, tensor, dim):
return self.expand_dims(tensor, dim)
def test_net_bool(): def test_net_bool():
x = np.random.randn(1, 16, 1, 1).astype(np.bool) x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_int8(): def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8) x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_uint8(): def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8) x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_int16(): def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16) x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_uint16(): def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16) x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_int32(): def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32) x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_uint32(): def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32) x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_int64(): def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64) x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_uint64(): def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64) x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_float16(): def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16) x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_float32(): def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32) x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
def test_net_float64(): def test_net_float64():
x = np.random.randn(1, 16, 1, 1).astype(np.float64) x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net() net = Net()
output = net(Tensor(x), -1) output = net(Tensor(x), -1)
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.expand_dims(x, -1))) assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))

View File

@ -17,83 +17,94 @@ from mindspore.ops import operations as P
import mindspore.nn as nn import mindspore.nn as nn
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.flatten = P.Flatten()
def construct(self, tensor): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
return self.flatten(tensor)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.flatten = P.Flatten()
def construct(self, tensor):
return self.flatten(tensor)
def test_net_int8(): def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8) x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))
def test_net_uint8(): def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8) x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))
def test_net_int16(): def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16) x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))
def test_net_uint16(): def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16) x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))
def test_net_int32(): def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32) x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))
def test_net_uint32(): def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32) x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))
def test_net_int64(): def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64) x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))
def test_net_uint64(): def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64) x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))
def test_net_float16(): def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16) x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))
def test_net_float32(): def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32) x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.flatten())) assert (np.all(output.asnumpy() == x.flatten()))

View File

@ -18,97 +18,110 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.isfinite = P.IsFinite()
def construct(self, tensor): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
return self.isfinite(tensor)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.isfinite = P.IsFinite()
def construct(self, tensor):
return self.isfinite(tensor)
def test_net_bool(): def test_net_bool():
x = np.random.randn(1, 16, 1, 1).astype(np.bool) x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_int8(): def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8) x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_uint8(): def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8) x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_int16(): def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16) x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_uint16(): def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16) x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_int32(): def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32) x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_uint32(): def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32) x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_int64(): def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64) x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_uint64(): def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64) x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_float16(): def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16) x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_float32(): def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32) x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))
def test_net_float64(): def test_net_float64():
x = np.random.randn(1, 16, 1, 1).astype(np.float64) x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.isfinite(x))) assert (np.all(output.asnumpy() == np.isfinite(x)))

View File

@ -18,97 +18,110 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.reshape = P.Reshape()
def construct(self, tensor): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
return self.reshape(tensor, (4,4))
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.reshape = P.Reshape()
def construct(self, tensor):
return self.reshape(tensor, (4, 4))
def test_net_bool(): def test_net_bool():
x = np.random.randn(1, 16, 1, 1).astype(np.bool) x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_int8(): def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8) x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_uint8(): def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8) x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_int16(): def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16) x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_uint16(): def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16) x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_int32(): def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32) x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_uint32(): def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32) x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_int64(): def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64) x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_uint64(): def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64) x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_float16(): def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16) x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_float32(): def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32) x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
def test_net_float64(): def test_net_float64():
x = np.random.randn(1, 16, 1, 1).astype(np.float64) x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == np.reshape(x, (4,4)))) assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))

View File

@ -17,97 +17,110 @@ from mindspore.ops import operations as P
import mindspore.nn as nn import mindspore.nn as nn
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.squeeze = P.Squeeze()
def construct(self, tensor): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
return self.squeeze(tensor)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.squeeze = P.Squeeze()
def construct(self, tensor):
return self.squeeze(tensor)
def test_net_bool(): def test_net_bool():
x = np.random.randn(1, 16, 1, 1).astype(np.bool) x = np.random.randn(1, 16, 1, 1).astype(np.bool)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_int8(): def test_net_int8():
x = np.random.randn(1, 16, 1, 1).astype(np.int8) x = np.random.randn(1, 16, 1, 1).astype(np.int8)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_uint8(): def test_net_uint8():
x = np.random.randn(1, 16, 1, 1).astype(np.uint8) x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_int16(): def test_net_int16():
x = np.random.randn(1, 16, 1, 1).astype(np.int16) x = np.random.randn(1, 16, 1, 1).astype(np.int16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_uint16(): def test_net_uint16():
x = np.random.randn(1, 16, 1, 1).astype(np.uint16) x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_int32(): def test_net_int32():
x = np.random.randn(1, 16, 1, 1).astype(np.int32) x = np.random.randn(1, 16, 1, 1).astype(np.int32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_uint32(): def test_net_uint32():
x = np.random.randn(1, 16, 1, 1).astype(np.uint32) x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_int64(): def test_net_int64():
x = np.random.randn(1, 16, 1, 1).astype(np.int64) x = np.random.randn(1, 16, 1, 1).astype(np.int64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_uint64(): def test_net_uint64():
x = np.random.randn(1, 16, 1, 1).astype(np.uint64) x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_float16(): def test_net_float16():
x = np.random.randn(1, 16, 1, 1).astype(np.float16) x = np.random.randn(1, 16, 1, 1).astype(np.float16)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_float32(): def test_net_float32():
x = np.random.randn(1, 16, 1, 1).astype(np.float32) x = np.random.randn(1, 16, 1, 1).astype(np.float32)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))
def test_net_float64(): def test_net_float64():
x = np.random.randn(1, 16, 1, 1).astype(np.float64) x = np.random.randn(1, 16, 1, 1).astype(np.float64)
net = Net() net = Net()
output = net(Tensor(x)) output = net(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())
assert(np.all(output.asnumpy() == x.squeeze())) assert (np.all(output.asnumpy() == x.squeeze()))

View File

@ -20,24 +20,29 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0) self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
self.variable = Parameter(initializer( self.variable = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='variable') 'normal', [2, 3, 3, 4]), name='variable')
self.accumulation = Parameter(initializer( self.accumulation = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='accumulation') 'normal', [2, 3, 3, 4]), name='accumulation')
self.learning_rate = Parameter(initializer( self.learning_rate = Parameter(initializer(
'normal', [1, ]), name='learning_rate') 'normal', [1, ]), name='learning_rate')
self.gradient = Parameter(initializer( self.gradient = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='gradient') 'normal', [2, 3, 3, 4]), name='gradient')
self.momentum = Parameter(initializer( self.momentum = Parameter(initializer(
'normal', [1, ]), name='momentum') 'normal', [1, ]), name='momentum')
def construct(self): def construct(self):
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum) return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)
def test_net(): def test_net():
apply_momentum = Net() apply_momentum = Net()
output = apply_momentum() output = apply_momentum()

View File

@ -21,22 +21,25 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.bias_add_grad = G.BiasAddGrad() self.bias_add_grad = G.BiasAddGrad()
#self.dout = Parameter(initializer( # self.dout = Parameter(initializer(
#'normal', [2, 3, 3, 4]), name='dout') # 'normal', [2, 3, 3, 4]), name='dout')
@ms_function
def construct(self, dout):
return self.bias_add_grad(dout)
@ms_function dout = np.ones([2, 3, 4, 4]).astype(np.float32)
def construct(self, dout):
return self.bias_add_grad(dout)
dout = np.ones([2,3,4,4]).astype(np.float32)
bias_add_grad = Net() bias_add_grad = Net()
output = bias_add_grad(Tensor(dout)) output = bias_add_grad(Tensor(dout))
expect_output = np.array([32.,32.,32.]).astype(np.float32) expect_output = np.array([32., 32., 32.]).astype(np.float32)
assert np.all(output.asnumpy()==expect_output), "bias_add_grad execute failed, please check current code commit" assert np.all(output.asnumpy() == expect_output), "bias_add_grad execute failed, please check current code commit"
print(output.asnumpy()) print(output.asnumpy())

View File

@ -21,17 +21,20 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.bias_add_grad = G.BiasAddGrad() self.bias_add_grad = G.BiasAddGrad()
@ms_function @ms_function
def construct(self, dout): def construct(self, dout):
return self.bias_add_grad(dout) return self.bias_add_grad(dout)
def test_net(): def test_net():
dout = np.random.rand(1, 1001).astype(np.float32) dout = np.random.rand(1, 1001).astype(np.float32)
bias_add_grad = Net() bias_add_grad = Net()

View File

@ -20,32 +20,33 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
out_channel = 64 out_channel = 64
kernel_size = 7 kernel_size = 7
self.conv = P.Conv2D(out_channel, self.conv = P.Conv2D(out_channel,
kernel_size, kernel_size,
mode=1, mode=1,
pad_mode="valid", pad_mode="valid",
pad=0, pad=0,
stride=1, stride=1,
dilation=1, dilation=1,
group=1) group=1)
self.w = Parameter(initializer( self.w = Parameter(initializer(
'normal', [64, 3, 7, 7]), name='w') 'normal', [64, 3, 7, 7]), name='w')
@ms_function @ms_function
def construct(self, x): def construct(self, x):
return self.conv(x, self.w) return self.conv(x, self.w)
def test_net(): def test_net():
x = np.random.randn(32,3,224,224).astype(np.float32) x = np.random.randn(32, 3, 224, 224).astype(np.float32)
conv = Net() conv = Net()
output = conv(Tensor(x)) output = conv(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())

View File

@ -21,37 +21,40 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.conv2d_grad = G.Conv2DBackpropFilter(4,1)
yt = Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32))
self.y = Parameter(yt, name='y')
self.get_shape = P.Shape()
@ms_function class Net(nn.Cell):
def construct(self, x, out): def __init__(self):
return self.conv2d_grad(out, x, self.get_shape(self.y)) super(Net, self).__init__()
self.conv2d_grad = G.Conv2DBackpropFilter(4, 1)
yt = Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32))
self.y = Parameter(yt, name='y')
self.get_shape = P.Shape()
@ms_function
def construct(self, x, out):
return self.conv2d_grad(out, x, self.get_shape(self.y))
x = Tensor(np.array([[[ x = Tensor(np.array([[[
[3, 0, 1, 2, 7, 4], [3, 0, 1, 2, 7, 4],
[1, 5, 8, 9, 3, 1], [1, 5, 8, 9, 3, 1],
[2, 7, 2, 5, 1, 3], [2, 7, 2, 5, 1, 3],
[0, 1, 3, 1, 7, 8], [0, 1, 3, 1, 7, 8],
[4, 2, 1, 6, 2, 8], [4, 2, 1, 6, 2, 8],
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)) [2, 4, 5, 2, 3, 9]]]]).astype(np.float32))
out = Tensor(np.array([[[ out = Tensor(np.array([[[
[ -5, -4, 0, 8], [-5, -4, 0, 8],
[-10, -2, 2, 3], [-10, -2, 2, 3],
[ 0, -2, -4, -7], [0, -2, -4, -7],
[ -3, -2, -3, -16]]]]).astype(np.float32)) [-3, -2, -3, -16]]]]).astype(np.float32))
operator = Net() operator = Net()
output = operator(x, out) output = operator(x, out)
expect_out = np.array([[[[ -60., -142., -265.],[-104., -211., -322.],[-102., -144., -248.]]]]).astype(np.float32) expect_out = np.array([[[[-60., -142., -265.], [-104., -211., -322.], [-102., -144., -248.]]]]).astype(np.float32)
print(output.asnumpy()) print(output.asnumpy())
print(expect_out) print(expect_out)
assert np.all(output.asnumpy()==expect_out), "conv2d_grad execute failed, please check current code commit" assert np.all(output.asnumpy() == expect_out), "conv2d_grad execute failed, please check current code commit"

View File

@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -33,26 +35,28 @@ class Grad(nn.Cell):
def construct(self, input, output_grad): def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad) return self.grad(self.network)(input, output_grad)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
out_channel = 512 out_channel = 512
kernel_size = 2048 kernel_size = 2048
self.conv = P.Conv2D(out_channel, self.conv = P.Conv2D(out_channel,
(kernel_size, kernel_size), (kernel_size, kernel_size),
mode=1, mode=1,
pad_mode="same", pad_mode="same",
pad=3, pad=3,
stride=2, stride=2,
dilation=1, dilation=1,
group=1) group=1)
self.w = Parameter(initializer( self.w = Parameter(initializer(
'normal', [512, 2048, 1, 1]), name='w') 'normal', [512, 2048, 1, 1]), name='w')
@ms_function @ms_function
def construct(self, x): def construct(self, x):
return self.conv(x, self.w) return self.conv(x, self.w)
def test_net(): def test_net():
x = np.ones([32, 2048, 7, 7]).astype(np.float32) x = np.ones([32, 2048, 7, 7]).astype(np.float32)
sens = np.ones([32, 512, 7, 7]).astype(np.float32) sens = np.ones([32, 512, 7, 7]).astype(np.float32)

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -30,6 +33,7 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.dense(x) return self.dense(x)
def test_net(): def test_net():
x = np.random.randn(32, 2048).astype(np.float32) x = np.random.randn(32, 2048).astype(np.float32)
net = Net() net = Net()

View File

@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad): def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad) return self.grad(self.network)(input, output_grad)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -41,6 +44,7 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.dense(x) return self.dense(x)
def test_net(): def test_net():
x = np.random.randn(32, 2048).astype(np.float32) x = np.random.randn(32, 2048).astype(np.float32)
sens = np.random.randn(32, 1001).astype(np.float32) sens = np.random.randn(32, 1001).astype(np.float32)

View File

@ -17,6 +17,7 @@ from mindspore.ops import operations as P
import mindspore.nn as nn import mindspore.nn as nn
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE, context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend") device_target="Ascend")

View File

@ -21,6 +21,7 @@ import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -35,7 +38,7 @@ class Net(nn.Cell):
def test_net(): def test_net():
x = np.random.randn(1,64,112,112).astype(np.float32) x = np.random.randn(1, 64, 112, 112).astype(np.float32)
# mean = np.random.randn(1,16,1,1).astype(np.float32) # mean = np.random.randn(1,16,1,1).astype(np.float32)
# variance = np.random.randn(1,16,1,1).astype(np.float32) # variance = np.random.randn(1,16,1,1).astype(np.float32)
fusedBn = Net() fusedBn = Net()
@ -45,4 +48,3 @@ def test_net():
print("***********output y*********") print("***********output y*********")
print(output.asnumpy()) print(output.asnumpy())

View File

@ -21,8 +21,11 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
#context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -33,6 +36,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad): def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad) return self.grad(self.network)(input, output_grad)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -47,8 +51,8 @@ class Net(nn.Cell):
def test_net(): def test_net():
x = np.random.randn(1,64,112,112).astype(np.float32) x = np.random.randn(1, 64, 112, 112).astype(np.float32)
sens = np.random.randn(1,64,112,112).astype(np.float32) sens = np.random.randn(1, 64, 112, 112).astype(np.float32)
net = Grad(Net()) net = Grad(Net())
output = net(Tensor(x), Tensor(sens)) output = net(Tensor(x), Tensor(sens))
print("***********x*********") print("***********x*********")

View File

@ -20,6 +20,8 @@ from mindspore import Tensor
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -31,32 +33,32 @@ class Net(nn.Cell):
def test_image_gradients(): def test_image_gradients():
image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32) image = Tensor(np.array([[[[1, 2], [3, 4]]]]), dtype=mstype.int32)
expected_dy = np.array([[[[2,2],[0,0]]]]).astype(np.int32) expected_dy = np.array([[[[2, 2], [0, 0]]]]).astype(np.int32)
expected_dx = np.array([[[[1,0],[1,0]]]]).astype(np.int32) expected_dx = np.array([[[[1, 0], [1, 0]]]]).astype(np.int32)
net = Net() net = Net()
dy, dx = net(image) dy, dx = net(image)
assert np.any(dx.asnumpy()-expected_dx) == False assert np.any(dx.asnumpy() - expected_dx) == False
assert np.any(dy.asnumpy()-expected_dy) == False assert np.any(dy.asnumpy() - expected_dy) == False
def test_image_gradients_multi_channel_depth(): def test_image_gradients_multi_channel_depth():
# 4 x 2 x 2 x 2 # 4 x 2 x 2 x 2
dtype = mstype.int32 dtype = mstype.int32
image = Tensor(np.array([[[[1,2],[3,4]], [[5,6],[7,8]]], image = Tensor(np.array([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
[[[3,5],[7,9]], [[11,13],[15,17]]], [[[3, 5], [7, 9]], [[11, 13], [15, 17]]],
[[[5,10],[15,20]], [[25,30],[35,40]]], [[[5, 10], [15, 20]], [[25, 30], [35, 40]]],
[[[10,20],[30,40]], [[50,60],[70,80]]]]), dtype=dtype) [[[10, 20], [30, 40]], [[50, 60], [70, 80]]]]), dtype=dtype)
expected_dy = Tensor(np.array([[[[2,2],[0,0]], [[2,2],[0,0]]], expected_dy = Tensor(np.array([[[[2, 2], [0, 0]], [[2, 2], [0, 0]]],
[[[4,4],[0,0]], [[4,4],[0,0]]], [[[4, 4], [0, 0]], [[4, 4], [0, 0]]],
[[[10,10],[0,0]], [[10,10],[0,0]]], [[[10, 10], [0, 0]], [[10, 10], [0, 0]]],
[[[20,20],[0,0]], [[20,20],[0,0]]]]), dtype=dtype) [[[20, 20], [0, 0]], [[20, 20], [0, 0]]]]), dtype=dtype)
expected_dx = Tensor(np.array([[[[1,0],[1,0]], [[1,0],[1,0]]], expected_dx = Tensor(np.array([[[[1, 0], [1, 0]], [[1, 0], [1, 0]]],
[[[2,0],[2,0]], [[2,0],[2,0]]], [[[2, 0], [2, 0]], [[2, 0], [2, 0]]],
[[[5,0],[5,0]], [[5,0],[5,0]]], [[[5, 0], [5, 0]], [[5, 0], [5, 0]]],
[[[10,0],[10,0]], [[10,0],[10,0]]]]), dtype=dtype) [[[10, 0], [10, 0]], [[10, 0], [10, 0]]]]), dtype=dtype)
net = Net() net = Net()
dy, dx = net(image) dy, dx = net(image)
assert np.any(dx.asnumpy()-expected_dx.asnumpy()) == False assert np.any(dx.asnumpy() - expected_dx.asnumpy()) == False
assert np.any(dy.asnumpy()-expected_dy.asnumpy()) == False assert np.any(dy.asnumpy() - expected_dy.asnumpy()) == False

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -30,8 +33,10 @@ class Net(nn.Cell):
def construct(self, x1, x2): def construct(self, x1, x2):
return self.matmul(x1, x2) return self.matmul(x1, x2)
x1 = np.random.randn(1,3).astype(np.float32)
x2 = np.random.randn(3,4).astype(np.float32) x1 = np.random.randn(1, 3).astype(np.float32)
x2 = np.random.randn(3, 4).astype(np.float32)
def test_net(): def test_net():
matmul = Net() matmul = Net()

View File

@ -20,12 +20,13 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.maxpool = P.MaxPool(pad_mode="SAME", window=3, stride=2) self.maxpool = P.MaxPool(pad_mode="SAME", window=3, stride=2)
@ms_function @ms_function
def construct(self, x): def construct(self, x):
output = self.maxpool(x) output = self.maxpool(x)
@ -33,7 +34,7 @@ class Net(nn.Cell):
def test_net(): def test_net():
x = np.random.randn(32,64,112,112).astype(np.float32) x = np.random.randn(32, 64, 112, 112).astype(np.float32)
maxpool = Net() maxpool = Net()
output = maxpool(Tensor(x)) output = maxpool(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())

View File

@ -19,6 +19,7 @@ from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")

View File

@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad): def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad) return self.grad(self.network)(input, output_grad)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -43,8 +46,9 @@ class Net(nn.Cell):
@ms_function @ms_function
def construct(self, x): def construct(self, x):
output = self.maxpool(x) output = self.maxpool(x)
return output[0] return output[0]
def test_net(): def test_net():
x = np.random.randn(32, 64, 112, 112).astype(np.float32) x = np.random.randn(32, 64, 112, 112).astype(np.float32)

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -30,8 +33,9 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.relu(x) return self.relu(x)
def test_net(): def test_net():
x = np.random.randn(2,3,3,4).astype(np.float32) x = np.random.randn(2, 3, 3, 4).astype(np.float32)
relu = Net() relu = Net()
output = relu(Tensor(x)) output = relu(Tensor(x))
print(x) print(x)

View File

@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad): def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad) return self.grad(self.network)(input, output_grad)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -41,9 +44,10 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.relu(x) return self.relu(x)
def test_net(): def test_net():
x = np.random.randn(2,3,3,4).astype(np.float32) x = np.random.randn(2, 3, 3, 4).astype(np.float32)
sens = np.random.randn(2,3,3,4).astype(np.float32) sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
net = Grad(Net()) net = Grad(Net())
output = net(Tensor(x), Tensor(sens)) output = net(Tensor(x), Tensor(sens))
print(len(output)) print(len(output))

View File

@ -18,18 +18,22 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.reshape = P.Reshape() self.reshape = P.Reshape()
@ms_function
def construct(self, tensor): @ms_function
return self.reshape(tensor, (1,16)) def construct(self, tensor):
return self.reshape(tensor, (1, 16))
def test_net(): def test_net():
x = np.random.randn(1, 16, 1, 1).astype(np.float16) x = np.random.randn(1, 16, 1, 1).astype(np.float16)
reshape = Net() reshape = Net()
output = reshape(Tensor(x)) output = reshape(Tensor(x))
print(output.asnumpy()) print(output.asnumpy())

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -29,7 +32,8 @@ class Net(nn.Cell):
@ms_function @ms_function
def construct(self, x): def construct(self, x):
return self.simplemean(x, (-2, -1)) return self.simplemean(x, (-2, -1))
def test_net(): def test_net():
x = np.random.randn(32, 2048, 7, 7).astype(np.float32) x = np.random.randn(32, 2048, 7, 7).astype(np.float32)
simplemean = Net() simplemean = Net()

View File

@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad): def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad) return self.grad(self.network)(input, output_grad)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -41,9 +44,10 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.simplemean(x, (-2, -1)) return self.simplemean(x, (-2, -1))
def test_net(): def test_net():
x = np.random.randn(32,2048,7,7).astype(np.float32) x = np.random.randn(32, 2048, 7, 7).astype(np.float32)
sens = np.random.randn(32,2048, 1, 1).astype(np.float32) sens = np.random.randn(32, 2048, 1, 1).astype(np.float32)
net = Grad(Net()) net = Grad(Net())
output = net(Tensor(x), Tensor(sens)) output = net(Tensor(x), Tensor(sens))
print(output.asnumpy()) print(output.asnumpy())

View File

@ -18,6 +18,7 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
@ -30,9 +31,10 @@ class Net(nn.Cell):
def construct(self, features, labels): def construct(self, features, labels):
return self.SparseSoftmaxCrossEntropyWithLogits(features, labels) return self.SparseSoftmaxCrossEntropyWithLogits(features, labels)
def np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, logits_dtype): def np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, logits_dtype):
num_class = logits_shape[1] num_class = logits_shape[1]
labels = np.random.randint(low=0, high=num_class - 1, size=labels_shape).astype(np.int32) labels = np.random.randint(low=0, high=num_class - 1, size=labels_shape).astype(np.int32)
logits = np.random.rand(*logits_shape).astype(logits_dtype) logits = np.random.rand(*logits_shape).astype(logits_dtype)
features = logits features = logits
features_reshape = np.reshape(features, [-1, num_class]) features_reshape = np.reshape(features, [-1, num_class])
@ -48,7 +50,7 @@ def np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, logi
loss = -np.sum(labels_mat * np.log(probs + 1.0e-20), axis=1) loss = -np.sum(labels_mat * np.log(probs + 1.0e-20), axis=1)
bp_res = np.reshape(bp, features.shape) bp_res = np.reshape(bp, features.shape)
loss_res = np.reshape(loss, labels.shape) loss_res = np.reshape(loss, labels.shape)
loss_res = np.sum(loss_res, axis=0)/loss_res.shape[0] loss_res = np.sum(loss_res, axis=0) / loss_res.shape[0]
return labels, logits, loss_res, bp_res return labels, logits, loss_res, bp_res
@ -65,4 +67,6 @@ def test_net():
print(loss_me.asnumpy().flatten()) print(loss_me.asnumpy().flatten())
print("-------------------------") print("-------------------------")
print(expect) print(expect)
test_net() test_net()

View File

@ -21,6 +21,7 @@ import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self, is_grad=False): def __init__(self, is_grad=False):
super(Net, self).__init__() super(Net, self).__init__()

View File

@ -20,11 +20,13 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
"""Net definition""" """Net definition"""
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.AssignAdd = P.AssignAdd() self.AssignAdd = P.AssignAdd()
@ -39,8 +41,8 @@ class Net(nn.Cell):
def test_net(): def test_net():
"""test AssignAdd""" """test AssignAdd"""
net = Net() net = Net()
x = Tensor(np.ones([1]).astype(np.float32)*100) x = Tensor(np.ones([1]).astype(np.float32) * 100)
print("MyPrintResult dataX:", x) print("MyPrintResult dataX:", x)
result = net(x) result = net(x)
print("MyPrintResult data::", result.asnumpy()) print("MyPrintResult data::", result.asnumpy())

View File

@ -20,11 +20,13 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
"""Net definition""" """Net definition"""
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.AssignSub = P.AssignSub() self.AssignSub = P.AssignSub()
@ -39,8 +41,8 @@ class Net(nn.Cell):
def test_net(): def test_net():
"""test AssignSub""" """test AssignSub"""
net = Net() net = Net()
x = Tensor(np.ones([1]).astype(np.int32)*100) x = Tensor(np.ones([1]).astype(np.int32) * 100)
print("MyPrintResult dataX:", x) print("MyPrintResult dataX:", x)
result = net(x) result = net(x)
print("MyPrintResult data::", result.asnumpy()) print("MyPrintResult data::", result.asnumpy())

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self, keep_dims, axis): def __init__(self, keep_dims, axis):
super(Net, self).__init__() super(Net, self).__init__()
@ -31,8 +34,10 @@ class Net(nn.Cell):
def construct(self, inputs): def construct(self, inputs):
return self.reduce_mean(inputs, self.axis) return self.reduce_mean(inputs, self.axis)
x1 = np.random.randn(64).astype(np.float32) x1 = np.random.randn(64).astype(np.float32)
def test_net(): def test_net():
keepdims = False keepdims = False
axis = -1 axis = -1

View File

@ -21,6 +21,7 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -29,8 +30,9 @@ class Net(nn.Cell):
def construct(self, x, y): def construct(self, x, y):
return self.add(x, y) return self.add(x, y)
x = np.random.randn(1,3,3,4).astype(np.float32)
y = np.random.randn(1,3,3,4).astype(np.float32) x = np.random.randn(1, 3, 3, 4).astype(np.float32)
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
def test_net(): def test_net():

View File

@ -20,15 +20,19 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.add = P.AddN() self.add = P.AddN()
def construct(self, x, y): def construct(self, x, y):
return self.add((x, y)) return self.add((x, y))
def test_net(): def test_net():
x = np.random.randn(1, 3, 3, 4).astype(np.float32) x = np.random.randn(1, 3, 3, 4).astype(np.float32)
y = np.random.randn(1, 3, 3, 4).astype(np.float32) y = np.random.randn(1, 3, 3, 4).astype(np.float32)

View File

@ -19,6 +19,7 @@ from mindspore.nn import Dense, SoftmaxCrossEntropyWithLogits
from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn import TrainOneStepCell, WithLossCell
import mindspore.context as context import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", impl_type="tbe") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", impl_type="tbe")
context.set_context(enable_task_sink=True) context.set_context(enable_task_sink=True)
@ -44,16 +45,16 @@ class Adam:
label = Tensor(label_np_onehot) label = Tensor(label_np_onehot)
ms_dense = Dense(in_channels=self.input_channels, ms_dense = Dense(in_channels=self.input_channels,
out_channels=self.output_channels, out_channels=self.output_channels,
weight_init=weight_np, weight_init=weight_np,
bias_init=bias, has_bias=True) bias_init=bias, has_bias=True)
criterion = SoftmaxCrossEntropyWithLogits() criterion = SoftmaxCrossEntropyWithLogits()
optimizer = nn.Adam(ms_dense.trainable_params(), optimizer = nn.Adam(ms_dense.trainable_params(),
learning_rate=1e-3, learning_rate=1e-3,
beta1=0.9, beta2=0.999, eps=self.epsilon, beta1=0.9, beta2=0.999, eps=self.epsilon,
use_locking=False, use_locking=False,
use_nesterov=False, weight_decay=0.0, use_nesterov=False, weight_decay=0.0,
loss_scale=1.0) loss_scale=1.0)
net_with_criterion = WithLossCell(ms_dense, criterion) net_with_criterion = WithLossCell(ms_dense, criterion)
train_network = TrainOneStepCell(net_with_criterion, optimizer) train_network = TrainOneStepCell(net_with_criterion, optimizer)
@ -68,5 +69,5 @@ class Adam:
def test_adam(): def test_adam():
fact = Adam(batch_num=8, input_channels=20, output_channels=5, epoch=5, lr=0.1, weight_decay=0.0, epsilon= 1e-8) fact = Adam(batch_num=8, input_channels=20, output_channels=5, epoch=5, lr=0.1, weight_decay=0.0, epsilon=1e-8)
fact.train_mindspore_impl() fact.train_mindspore_impl()

View File

@ -21,23 +21,26 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0) self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
self.variable = Parameter(initializer( self.variable = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='variable') 'normal', [2, 3, 3, 4]), name='variable')
self.accumulation = Parameter(initializer( self.accumulation = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='accumulation') 'normal', [2, 3, 3, 4]), name='accumulation')
self.learning_rate = Parameter(initializer( self.learning_rate = Parameter(initializer(
'normal', [1, ]), name='learning_rate') 'normal', [1, ]), name='learning_rate')
self.gradient = Parameter(initializer( self.gradient = Parameter(initializer(
'normal', [2, 3, 3, 4]), name='gradient') 'normal', [2, 3, 3, 4]), name='gradient')
self.momentum = Parameter(initializer( self.momentum = Parameter(initializer(
'normal', [1, ]), name='momentum') 'normal', [1, ]), name='momentum')
def construct(self): def construct(self):
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum) return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)
def test_net(): def test_net():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
apply_momentum = Net() apply_momentum = Net()

View File

@ -19,8 +19,10 @@ from mindspore.nn import Cell
from mindspore.train.model import Model from mindspore.train.model import Model
import pytest import pytest
from mindspore import context from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(Cell): class Net(Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -30,17 +32,20 @@ class Net(Cell):
x = self.batchmatmul(inputa, inputb) x = self.batchmatmul(inputa, inputb)
return x return x
def tf_me_batchmatmul(inputa, inputb): def tf_me_batchmatmul(inputa, inputb):
net = Net() net = Net()
net.set_train() net.set_train()
model = Model(net) model = Model(net)
out_me = model.predict(Tensor(inputa), Tensor(inputb)) out_me = model.predict(Tensor(inputa), Tensor(inputb))
def test_batchmatmul_normal_shape1(): def test_batchmatmul_normal_shape1():
inputa = np.random.randn(128, 16, 128).astype(np.float32) inputa = np.random.randn(128, 16, 128).astype(np.float32)
inputb = np.random.randn(128, 128, 64).astype(np.float32) inputb = np.random.randn(128, 128, 64).astype(np.float32)
tf_me_batchmatmul(Tensor(inputa), Tensor(inputb)) tf_me_batchmatmul(Tensor(inputa), Tensor(inputb))
def test_batchmatmul_normal_shape2(): def test_batchmatmul_normal_shape2():
inputa = np.random.randn(1, 16, 128, 128).astype(np.float32) inputa = np.random.randn(1, 16, 128, 128).astype(np.float32)
inputb = np.random.randn(1, 16, 128, 64).astype(np.float32) inputb = np.random.randn(1, 16, 128, 64).astype(np.float32)

View File

@ -21,6 +21,7 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -35,7 +36,7 @@ class Net(nn.Cell):
def test_net(): def test_net():
x = np.random.randn(1,64,112,112).astype(np.float32) x = np.random.randn(1, 64, 112, 112).astype(np.float32)
# mean = np.random.randn(1,16,1,1).astype(np.float32) # mean = np.random.randn(1,16,1,1).astype(np.float32)
# variance = np.random.randn(1,16,1,1).astype(np.float32) # variance = np.random.randn(1,16,1,1).astype(np.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
@ -55,4 +56,3 @@ def test_net():
print("***********output y*********") print("***********output y*********")
print(output.asnumpy()) print(output.asnumpy())

View File

@ -21,8 +21,11 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
#context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
# context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -48,7 +51,7 @@ class Net(nn.Cell):
def test_net(): def test_net():
x = np.random.randn(1,64,112,112).astype(np.float32) x = np.random.randn(1, 64, 112, 112).astype(np.float32)
sens = np.random.randn(1,64,112,112).astype(np.float32) sens = np.random.randn(1, 64, 112, 112).astype(np.float32)
net = Grad(Net()) net = Grad(Net())
output = net(Tensor(x), Tensor(sens)) output = net(Tensor(x), Tensor(sens))

View File

@ -20,11 +20,13 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
"""Net definition""" """Net definition"""
def __init__(self, def __init__(self,
output_channels, output_channels,
bias_init='zeros', bias_init='zeros',
@ -51,4 +53,3 @@ def test_compile():
# enable it when staging function is ready # enable it when staging function is ready
output = net(input_data) output = net(input_data)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -21,7 +21,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -31,6 +34,7 @@ class Net(nn.Cell):
def construct(self, dout): def construct(self, dout):
return self.bias_add_grad(dout) return self.bias_add_grad(dout)
def test_net(): def test_net():
dout = np.random.rand(1, 1001).astype(np.float32) dout = np.random.rand(1, 1001).astype(np.float32)
bias_add_grad = Net() bias_add_grad = Net()

View File

@ -20,11 +20,12 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__( self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.cat = P.Concat(axis=1) self.cat = P.Concat(axis=1)
@ -46,4 +47,4 @@ def test_net():
print(np.arange(2 * 2).reshape(2, 2)) print(np.arange(2 * 2).reshape(2, 2))
print(np.arange(2 * 3).reshape(2, 3)) print(np.arange(2 * 3).reshape(2, 3))
print(output) print(output)
assert(output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()

View File

@ -21,31 +21,30 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
out_channel = 64 out_channel = 64
kernel_size = 7 kernel_size = 7
self.conv = P.Conv2D(out_channel, self.conv = P.Conv2D(out_channel,
kernel_size, kernel_size,
mode=1, mode=1,
pad_mode="valid", pad_mode="valid",
pad=0, pad=0,
stride=1, stride=1,
dilation=1, dilation=1,
group=1) group=1)
self.w = Parameter(initializer( self.w = Parameter(initializer(
'normal', [64, 3, 7, 7]), name='w') 'normal', [64, 3, 7, 7]), name='w')
@ms_function @ms_function
def construct(self, x): def construct(self, x):
return self.conv(x, self.w) return self.conv(x, self.w)
def test_net(): def test_net():
x = np.random.randn(32,3,224,224).astype(np.float32) x = np.random.randn(32, 3, 224, 224).astype(np.float32)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
conv = Net() conv = Net()
output = conv(Tensor(x)) output = conv(Tensor(x))

View File

@ -21,6 +21,7 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target='Ascend') context.set_context(device_target='Ascend')
@ -37,19 +38,21 @@ class Net(nn.Cell):
stride=1, stride=1,
dilation=1, dilation=1,
group=1) group=1)
self.w = Parameter(initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='w') self.w = Parameter(
initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]),
name='w')
self.x = Parameter(initializer(Tensor(np.array([[[ self.x = Parameter(initializer(Tensor(np.array([[[
[3, 0, 1, 2, 7, 4], [3, 0, 1, 2, 7, 4],
[1, 5, 8, 9, 3, 1], [1, 5, 8, 9, 3, 1],
[2, 7, 2, 5, 1, 3], [2, 7, 2, 5, 1, 3],
[0, 1, 3, 1, 7, 8], [0, 1, 3, 1, 7, 8],
[4, 2, 1, 6, 2, 8], [4, 2, 1, 6, 2, 8],
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1,1,6,6]), name='x') [2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1, 1, 6, 6]), name='x')
self.out = Parameter(initializer(Tensor(np.array([[[ self.out = Parameter(initializer(Tensor(np.array([[[
[ -5, -4, 0, 8], [-5, -4, 0, 8],
[-10, -2, 2, 3], [-10, -2, 2, 3],
[ 0, -2, -4, -7], [0, -2, -4, -7],
[ -3, -2, -3, -16]]]]).astype(np.float32)),[1,1,4,4]), name='y') [-3, -2, -3, -16]]]]).astype(np.float32)), [1, 1, 4, 4]), name='y')
self.get_shape = P.Shape() self.get_shape = P.Shape()
@ms_function @ms_function
@ -67,7 +70,7 @@ def test_conv2d_backprop_filter():
[-104, -211, -322] [-104, -211, -322]
[-102, -144, -248]]]] [-102, -144, -248]]]]
""" """
expect = np.array([[[[ -60, -142, -265], expect = np.array([[[[-60, -142, -265],
[-104, -211, -322], [-104, -211, -322],
[-102, -144, -248]]]]).astype(np.float32) [-102, -144, -248]]]]).astype(np.float32)
print(output) print(output)

View File

@ -20,6 +20,7 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
@ -36,19 +37,21 @@ class Net(nn.Cell):
stride=1, stride=1,
dilation=1, dilation=1,
group=1) group=1)
self.w = Parameter(initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='w') self.w = Parameter(
initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]),
name='w')
self.x = Parameter(initializer(Tensor(np.array([[[ self.x = Parameter(initializer(Tensor(np.array([[[
[3, 0, 1, 2, 7, 4], [3, 0, 1, 2, 7, 4],
[1, 5, 8, 9, 3, 1], [1, 5, 8, 9, 3, 1],
[2, 7, 2, 5, 1, 3], [2, 7, 2, 5, 1, 3],
[0, 1, 3, 1, 7, 8], [0, 1, 3, 1, 7, 8],
[4, 2, 1, 6, 2, 8], [4, 2, 1, 6, 2, 8],
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1,1,6,6]), name='x') [2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1, 1, 6, 6]), name='x')
self.out = Parameter(initializer(Tensor(np.array([[[ self.out = Parameter(initializer(Tensor(np.array([[[
[ -5, -4, 0, 8], [-5, -4, 0, 8],
[-10, -2, 2, 3], [-10, -2, 2, 3],
[ 0, -2, -4, -7], [0, -2, -4, -7],
[ -3, -2, -3, -16]]]]).astype(np.float32)),[1,1,4,4]), name='y') [-3, -2, -3, -16]]]]).astype(np.float32)), [1, 1, 4, 4]), name='y')
self.get_shape = P.Shape() self.get_shape = P.Shape()
@ms_function @ms_function
@ -69,11 +72,11 @@ def test_conv2d_backprop_input():
[ -3, -4, -4, -19, 7, 23] [ -3, -4, -4, -19, 7, 23]
[ -3, -2, 0, -14, 3, 16]]]] [ -3, -2, 0, -14, 3, 16]]]]
""" """
expect = np.array([[[[ -5, -4, 5, 12, 0, -8], expect = np.array([[[[-5, -4, 5, 12, 0, -8],
[-15, -6, 17, 17, -2, -11], [-15, -6, 17, 17, -2, -11],
[-15, -8, 13, 12, 2, -4], [-15, -8, 13, 12, 2, -4],
[-13, -6, 8, -14, 5, 20], [-13, -6, 8, -14, 5, 20],
[ -3, -4, -4, -19, 7, 23], [-3, -4, -4, -19, 7, 23],
[ -3, -2, 0, -14, 3, 16]]]]).astype(np.float32) [-3, -2, 0, -14, 3, 16]]]]).astype(np.float32)
print(output) print(output)
assert (output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()

View File

@ -20,9 +20,11 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
from mindspore import log as logger from mindspore import log as logger
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -33,7 +35,7 @@ class Net(nn.Cell):
def test_net(): def test_net():
x = np.random.randn(2,5,8).astype(np.float32) x = np.random.randn(2, 5, 8).astype(np.float32)
mask = np.random.randn(16).astype(np.uint8) mask = np.random.randn(16).astype(np.uint8)
keep_prob = 1 keep_prob = 1
@ -48,4 +50,3 @@ def test_net():
logger.info("***********output y*********") logger.info("***********output y*********")
logger.info(output.asnumpy()) logger.info(output.asnumpy())

View File

@ -21,6 +21,7 @@ import math
import pytest import pytest
from mindspore import context from mindspore import context
from mindspore import log as logger from mindspore import log as logger
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
@ -52,6 +53,7 @@ def test_gelu_input_dim_0():
with pytest.raises(ValueError): with pytest.raises(ValueError):
gelu_forward_cmp(input_shape) gelu_forward_cmp(input_shape)
def test_gelu_input_dim_10240_1024(): def test_gelu_input_dim_10240_1024():
input_shape = [10240, 1024] input_shape = [10240, 1024]
gelu_forward_cmp(input_shape) gelu_forward_cmp(input_shape)
@ -96,6 +98,7 @@ def test_gelu_input_dim_128_4096():
input_shape = [128, 4096] input_shape = [128, 4096]
gelu_forward_cmp(input_shape) gelu_forward_cmp(input_shape)
@pytest.mark.lower_bs @pytest.mark.lower_bs
def test_gelu_input_dim_160_1024(): def test_gelu_input_dim_160_1024():
input_shape = [160, 1024] input_shape = [160, 1024]

View File

@ -25,6 +25,7 @@ from mindspore import log as logger
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Grad(Cell): class Grad(Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -55,6 +56,7 @@ def gelu_backward_cmp(input_shape):
logger.info("---------me--------") logger.info("---------me--------")
logger.info(output_grad_me) logger.info(output_grad_me)
# ---------- LARGE INPUT --------------- # ---------- LARGE INPUT ---------------
class MEGeluLargeIn(Cell): class MEGeluLargeIn(Cell):
@ -67,6 +69,7 @@ class MEGeluLargeIn(Cell):
x = self.matmul(x1, x2) x = self.matmul(x1, x2)
return self.gelu(x) return self.gelu(x)
class GradLargeIn(Cell): class GradLargeIn(Cell):
def __init__(self, network): def __init__(self, network):
super(GradLargeIn, self).__init__() super(GradLargeIn, self).__init__()
@ -86,5 +89,5 @@ def gelu_backward_me_large_in_impl(x1, x2, output_grad):
def test_grad_gelu_input_10240_1024(): def test_grad_gelu_input_10240_1024():
input_shape = [10240,1024] input_shape = [10240, 1024]
gelu_backward_cmp(input_shape) gelu_backward_cmp(input_shape)

View File

@ -20,8 +20,10 @@ from mindspore.common.tensor import Tensor
from mindspore.train.model import Model from mindspore.train.model import Model
from mindspore import log as logger from mindspore import log as logger
from mindspore import context from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Greater(Cell): class Greater(Cell):
def __init__(self): def __init__(self):
super(Greater, self).__init__() super(Greater, self).__init__()
@ -30,6 +32,7 @@ class Greater(Cell):
def construct(self, inputa, inputb): def construct(self, inputa, inputb):
return self.greater(inputa, inputb) return self.greater(inputa, inputb)
def me_greater(inputa, inputb): def me_greater(inputa, inputb):
net = Greater() net = Greater()
net.set_train() net.set_train()
@ -42,10 +45,11 @@ def me_greater(inputa, inputb):
logger.info(inputb) logger.info(inputb)
return out.asnumpy() return out.asnumpy()
@pytest.mark.ssd_tbe @pytest.mark.ssd_tbe
def test_greater_2d_scalar0(): def test_greater_2d_scalar0():
a = np.random.randint(-5, 5, [8, 32]).astype(np.int32) a = np.random.randint(-5, 5, [8, 32]).astype(np.int32)
b = np.random.randint(-5, 5, [8, 32]).astype(np.int32) b = np.random.randint(-5, 5, [8, 32]).astype(np.int32)
out_me = me_greater(Tensor(a), Tensor(b)) out_me = me_greater(Tensor(a), Tensor(b))
logger.info("Check me result:") logger.info("Check me result:")
logger.info(out_me) logger.info(out_me)

View File

@ -20,8 +20,10 @@ from mindspore.train.model import Model
from mindspore import log as logger from mindspore import log as logger
import pytest import pytest
from mindspore import context from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(Cell): class Net(Cell):
def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta): def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta):
super(Net, self).__init__() super(Net, self).__init__()
@ -31,6 +33,7 @@ class Net(Cell):
x = self.layernorm(input) x = self.layernorm(input)
return x return x
def pt_me_layernorm(input_data, normalized_shape, gamma, beta, axis): def pt_me_layernorm(input_data, normalized_shape, gamma, beta, axis):
net = Net(normalized_shape, begin_norm_axis=axis, net = Net(normalized_shape, begin_norm_axis=axis,
begin_params_axis=axis, begin_params_axis=axis,
@ -42,6 +45,7 @@ def pt_me_layernorm(input_data, normalized_shape, gamma, beta, axis):
logger.info("Check me result:") logger.info("Check me result:")
logger.info(out_me.asnumpy()) logger.info(out_me.asnumpy())
@pytest.mark.lower_bs @pytest.mark.lower_bs
def test_normal_layernorm_1_128_1024_axis_2(): def test_normal_layernorm_1_128_1024_axis_2():
""" """
@ -52,4 +56,4 @@ def test_normal_layernorm_1_128_1024_axis_2():
gamma.fill(1.1) gamma.fill(1.1)
beta = np.random.randn(1024).astype(np.float32) beta = np.random.randn(1024).astype(np.float32)
beta.fill(0.1) beta.fill(0.1)
pt_me_layernorm(input_data, (1024, ), gamma, beta, 2) pt_me_layernorm(input_data, (1024,), gamma, beta, 2)

View File

@ -19,18 +19,21 @@ from mindspore.nn import Cell
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
from mindspore import log as logger from mindspore import log as logger
from mindspore import context from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Grad(Cell): class Grad(Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
self.network = network self.network = network
def construct(self, input, output_grad,): def construct(self, input, output_grad, ):
gout = self.grad(self.network)(input, output_grad) gout = self.grad(self.network)(input, output_grad)
return gout return gout
class Net(Cell): class Net(Cell):
def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta): def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta):
super(Net, self).__init__() super(Net, self).__init__()
@ -40,6 +43,7 @@ class Net(Cell):
x = self.layernorm(input) x = self.layernorm(input)
return x return x
def py_me_layernorm_grad(input_data, normalized_shape, gamma, beta, axis, gradients): def py_me_layernorm_grad(input_data, normalized_shape, gamma, beta, axis, gradients):
input_me = Tensor(input_data) input_me = Tensor(input_data)
net_me = Grad(Net(normalized_shape, begin_norm_axis=axis, net_me = Grad(Net(normalized_shape, begin_norm_axis=axis,
@ -52,6 +56,7 @@ def py_me_layernorm_grad(input_data, normalized_shape, gamma, beta, axis, gradie
logger.info("Check me result:") logger.info("Check me result:")
logger.info(out_grad.asnumpy()) logger.info(out_grad.asnumpy())
def test_normal_layernorm_grad_normalize_2d(): def test_normal_layernorm_grad_normalize_2d():
""" """
1 input[1, 128, 1024],normalized_shape=[1024],element_affine=False 1 input[1, 128, 1024],normalized_shape=[1024],element_affine=False

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2): def construct(self, x1, x2):
return self.less(x1, x2) return self.less(x1, x2)
x1 = np.random.randn(3,4).astype(np.float16)
x2 = np.random.randn(3,4).astype(np.float16) x1 = np.random.randn(3, 4).astype(np.float16)
x2 = np.random.randn(3, 4).astype(np.float16)
def test_net(): def test_net():
less = Net() less = Net()
@ -37,4 +42,3 @@ def test_net():
print(x1) print(x1)
print(x2) print(x2)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2): def construct(self, x1, x2):
return self.less_equal(x1, x2) return self.less_equal(x1, x2)
x1 = np.random.randn(3,4).astype(np.float16)
x2 = np.random.randn(3,4).astype(np.float16) x1 = np.random.randn(3, 4).astype(np.float16)
x2 = np.random.randn(3, 4).astype(np.float16)
def test_net(): def test_net():
less_equal = Net() less_equal = Net()
@ -37,4 +42,3 @@ def test_net():
print(x1) print(x1)
print(x2) print(x2)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,12 +31,14 @@ class Net(nn.Cell):
def construct(self, x1, x2): def construct(self, x1, x2):
return self.logical_and(x1, x2) return self.logical_and(x1, x2)
x1 = [True, True, False, False, True, True, False, False] x1 = [True, True, False, False, True, True, False, False]
x2 = [True, False, False, True, True, False, False, True] x2 = [True, False, False, True, True, False, False, True]
def test_net(): def test_net():
logical_and = Net() logical_and = Net()
output = logical_and(Tensor(x1), Tensor(x2)) output = logical_and(Tensor(x1), Tensor(x2))
print(x1) print(x1)
print(x2) print(x2)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,11 +31,12 @@ class Net(nn.Cell):
def construct(self, x1): def construct(self, x1):
return self.logical_not(x1) return self.logical_not(x1)
x1 = [True, True, False, False, True, True, False, False] x1 = [True, True, False, False, True, True, False, False]
def test_net(): def test_net():
logical_not = Net() logical_not = Net()
output = logical_not(Tensor(x1)) output = logical_not(Tensor(x1))
print(x1) print(x1)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,12 +31,14 @@ class Net(nn.Cell):
def construct(self, x1, x2): def construct(self, x1, x2):
return self.logical_or(x1, x2) return self.logical_or(x1, x2)
x1 = [True, True, False, False, True, True, False, False] x1 = [True, True, False, False, True, True, False, False]
x2 = [True, False, False, True, True, False, False, True] x2 = [True, False, False, True, True, False, False, True]
def test_net(): def test_net():
logical_or = Net() logical_or = Net()
output = logical_or(Tensor(x1), Tensor(x2)) output = logical_or(Tensor(x1), Tensor(x2))
print(x1) print(x1)
print(x2) print(x2)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -21,6 +21,7 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -30,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2): def construct(self, x1, x2):
return self.matmul(x1, x2) return self.matmul(x1, x2)
x1 = np.random.randn(1,3).astype(np.float32)
x2 = np.random.randn(3,4).astype(np.float32) x1 = np.random.randn(1, 3).astype(np.float32)
x2 = np.random.randn(3, 4).astype(np.float32)
def test_net(): def test_net():
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -30,8 +33,10 @@ class Net(nn.Cell):
def construct(self, x1, x2): def construct(self, x1, x2):
return self.matmul(x1, x2) return self.matmul(x1, x2)
x1 = np.random.randn(10,1).astype(np.float32)
x2 = np.random.randn(100,1).astype(np.float32) x1 = np.random.randn(10, 1).astype(np.float32)
x2 = np.random.randn(100, 1).astype(np.float32)
def test_net(): def test_net():
matmul = Net() matmul = Net()

View File

@ -22,14 +22,16 @@ from mindspore.ops import operations as P
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Max(nn.Cell): class Max(nn.Cell):
def __init__(self,dtype): def __init__(self, dtype):
super(Max, self).__init__() super(Max, self).__init__()
self.max = P.Maximum() self.max = P.Maximum()
def construct(self, inputa, inputb): def construct(self, inputa, inputb):
return self.max(inputa, inputb) return self.max(inputa, inputb)
def me_max(inputa, inputb, dtype=ms.float32): def me_max(inputa, inputb, dtype=ms.float32):
context.set_context(mode=context.GRAPH_MODE) context.set_context(mode=context.GRAPH_MODE)
net = Max(dtype) net = Max(dtype)
@ -44,14 +46,16 @@ def me_max(inputa, inputb, dtype=ms.float32):
print(out) print(out)
return out.asnumpy() return out.asnumpy()
def cmp_max(a,b):
def cmp_max(a, b):
out = np.maximum(a, b) out = np.maximum(a, b)
out_ms = me_max(a, b) out_ms = me_max(a, b)
print("-------ms------") print("-------ms------")
print("numpy out :{}".format(out)) print("numpy out :{}".format(out))
print("ms out :{}".format(out_ms)) print("ms out :{}".format(out_ms))
def test_maximum_2_2(): def test_maximum_2_2():
a = np.random.randn(2, 2).astype(np.float32) a = np.random.randn(2, 2).astype(np.float32)
b = np.random.randn(2, 2).astype(np.float32) b = np.random.randn(2, 2).astype(np.float32)
cmp_max(a,b) cmp_max(a, b)

View File

@ -22,6 +22,7 @@ from mindspore.ops import operations as P
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
grad = C.GradOperation('get_all', get_all=True, sens_param=True) grad = C.GradOperation('get_all', get_all=True, sens_param=True)
class MaxNetMe(Cell): class MaxNetMe(Cell):
def __init__(self): def __init__(self):
super(MaxNetMe, self).__init__() super(MaxNetMe, self).__init__()
@ -31,6 +32,7 @@ class MaxNetMe(Cell):
x = self.max(inputA, inputB) x = self.max(inputA, inputB)
return x return x
class GradWrap(Cell): class GradWrap(Cell):
def __init__(self, network): def __init__(self, network):
super(GradWrap, self).__init__() super(GradWrap, self).__init__()
@ -40,6 +42,7 @@ class GradWrap(Cell):
gout = grad(self.network)(inputA, inputB, sens) gout = grad(self.network)(inputA, inputB, sens)
return gout return gout
def gen_data(inputA_np, inputB_np, grad=None): def gen_data(inputA_np, inputB_np, grad=None):
inputA_me = inputA_np inputA_me = inputA_np
if isinstance(inputA_np, np.ndarray) == True: if isinstance(inputA_np, np.ndarray) == True:
@ -61,7 +64,8 @@ def gen_data(inputA_np, inputB_np, grad=None):
print(output[0].asnumpy()) print(output[0].asnumpy())
print(output[1].asnumpy()) print(output[1].asnumpy())
def test_net(): def test_net():
inputA_np = np.random.randn(1, 3, 2, 2).astype(np.float32) inputA_np = np.random.randn(1, 3, 2, 2).astype(np.float32)
inputB_np = np.random.randn(1, 3, 2, 2).astype(np.float32) inputB_np = np.random.randn(1, 3, 2, 2).astype(np.float32)
gen_data(inputA_np, inputB_np) gen_data(inputA_np, inputB_np)

View File

@ -19,12 +19,12 @@ from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.maxpool = P.MaxPool(padding="SAME", ksize=3, strides=2) self.maxpool = P.MaxPool(padding="SAME", ksize=3, strides=2)
@ms_function @ms_function
def construct(self, x): def construct(self, x):
output = self.maxpool(x) output = self.maxpool(x)
@ -32,7 +32,7 @@ class Net(nn.Cell):
def test_net(): def test_net():
x = np.random.randn(32,64,112,112).astype(np.float16) x = np.random.randn(32, 64, 112, 112).astype(np.float16)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
maxpool = Net() maxpool = Net()
output = maxpool(Tensor(x)) output = maxpool(Tensor(x))

View File

@ -19,6 +19,7 @@ from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")

View File

@ -22,7 +22,10 @@ from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
import mindspore as ms import mindspore as ms
from mindspore.train.model import Model from mindspore.train.model import Model
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Min(nn.Cell): class Min(nn.Cell):
def __init__(self, dtype): def __init__(self, dtype):
super(Min, self).__init__() super(Min, self).__init__()
@ -46,7 +49,8 @@ def me_min(inputa, inputb, dtype=ms.float32):
print(out) print(out)
return out.asnumpy() return out.asnumpy()
def cmp_min(a,b):
def cmp_min(a, b):
print(a) print(a)
print(b) print(b)
@ -55,8 +59,8 @@ def cmp_min(a,b):
out_me = me_min(a, b) out_me = me_min(a, b)
print(out_me) print(out_me)
def test_minimum_2_2(): def test_minimum_2_2():
a = np.random.randn(2, 2, 1, 1).astype(np.float32) a = np.random.randn(2, 2, 1, 1).astype(np.float32)
b = np.random.randn(2, 2, 1, 1).astype(np.float32) b = np.random.randn(2, 2, 1, 1).astype(np.float32)
cmp_min(a,b) cmp_min(a, b)

View File

@ -22,6 +22,8 @@ from mindspore.ops.operations import Minimum
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad = C.GradOperation('get_all', get_all=True, sens_param=True) grad = C.GradOperation('get_all', get_all=True, sens_param=True)
class MinNetMe(Cell): class MinNetMe(Cell):
def __init__(self): def __init__(self):
super(MinNetMe, self).__init__() super(MinNetMe, self).__init__()
@ -41,6 +43,7 @@ class GradWrap(Cell):
gout = grad(self.network)(inputA, inputB, sens) gout = grad(self.network)(inputA, inputB, sens)
return gout return gout
def gen_data(inputA_np, inputB_np, grad=None): def gen_data(inputA_np, inputB_np, grad=None):
inputA_me = inputA_np inputA_me = inputA_np
if isinstance(inputA_np, np.ndarray) == True: if isinstance(inputA_np, np.ndarray) == True:
@ -51,7 +54,7 @@ def gen_data(inputA_np, inputB_np, grad=None):
inputB_me = Tensor(inputB_np) inputB_me = Tensor(inputB_np)
if grad is None: if grad is None:
grad = np.random.randn(1, 3, 2, 2).astype(np.float32) grad = np.random.randn(1, 3, 2, 2).astype(np.float32)
print(inputA_np) print(inputA_np)
print(inputB_np) print(inputB_np)

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2): def construct(self, x1, x2):
return self.mul(x1, x2) return self.mul(x1, x2)
x1 = np.random.randn(3,4).astype(np.float32)
x2 = np.random.randn(3,4).astype(np.float32) x1 = np.random.randn(3, 4).astype(np.float32)
x2 = np.random.randn(3, 4).astype(np.float32)
def test_net(): def test_net():
mul = Net() mul = Net()

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,8 +31,8 @@ class Net(nn.Cell):
def construct(self): def construct(self):
return self.npu_alloc_float_status() return self.npu_alloc_float_status()
def test_net(): def test_net():
npu_alloc_float_status = Net() npu_alloc_float_status = Net()
output = npu_alloc_float_status() output = npu_alloc_float_status()
print(output.asnumpy()) print(output.asnumpy())

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,11 +31,12 @@ class Net(nn.Cell):
def construct(self, x1): def construct(self, x1):
return self.npu_clear_float_status(x1) return self.npu_clear_float_status(x1)
x1 = np.random.randn(8).astype(np.float32) x1 = np.random.randn(8).astype(np.float32)
def test_net(): def test_net():
npu_clear_float_status = Net() npu_clear_float_status = Net()
output = npu_clear_float_status(Tensor(x1)) output = npu_clear_float_status(Tensor(x1))
print(x1) print(x1)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,11 +31,12 @@ class Net(nn.Cell):
def construct(self, x1): def construct(self, x1):
return self.npu_get_float_status(x1) return self.npu_get_float_status(x1)
x1 = np.random.randn(8).astype(np.float32) x1 = np.random.randn(8).astype(np.float32)
def test_net(): def test_net():
npu_get_float_status = Net() npu_get_float_status = Net()
output = npu_get_float_status(Tensor(x1)) output = npu_get_float_status(Tensor(x1))
print(x1) print(x1)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -18,21 +18,24 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.pad = P.Pad(paddings=((3,2), (2,3))) self.pad = P.Pad(paddings=((3, 2), (2, 3)))
@ms_function @ms_function
def construct(self, x): def construct(self, x):
x = self.pad(x) x = self.pad(x)
return x return x
x = np.random.random(size=(2, 2)).astype(np.float32) x = np.random.random(size=(2, 2)).astype(np.float32)
def test_net(): def test_net():
pad = Net() pad = Net()
output = pad(Tensor(x)) output = pad(Tensor(x))

View File

@ -23,8 +23,10 @@ from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
import mindspore as ms import mindspore as ms
from mindspore.train.model import Model from mindspore.train.model import Model
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class PowMe(Cell): class PowMe(Cell):
def __init__(self): def __init__(self):
super(PowMe, self).__init__() super(PowMe, self).__init__()
@ -33,6 +35,7 @@ class PowMe(Cell):
def construct(self, input, exp): def construct(self, input, exp):
return self.pow(input, exp) return self.pow(input, exp)
def pow_forward_me_impl(input, exp): def pow_forward_me_impl(input, exp):
n = PowMe() n = PowMe()
n.set_train() n.set_train()
@ -40,6 +43,7 @@ def pow_forward_me_impl(input, exp):
out = m.predict(input, exp) out = m.predict(input, exp)
return out.asnumpy() return out.asnumpy()
def pow_forward_cmp(input_shape, exp_shape): def pow_forward_cmp(input_shape, exp_shape):
if len(input_shape) == 0: if len(input_shape) == 0:
input_np = np.absolute(np.random.randn()) input_np = np.absolute(np.random.randn())
@ -54,14 +58,14 @@ def pow_forward_cmp(input_shape, exp_shape):
exp_np = np.absolute(np.random.randn(*exp_shape).astype(np.float32)) exp_np = np.absolute(np.random.randn(*exp_shape).astype(np.float32))
exp_tf = exp_np exp_tf = exp_np
exp_me = Tensor(exp_np, dtype=ms.float32) exp_me = Tensor(exp_np, dtype=ms.float32)
out_me = pow_forward_me_impl(input_me, exp_me) out_me = pow_forward_me_impl(input_me, exp_me)
print(input_me) print(input_me)
print(exp_me) print(exp_me)
print(out_me) print(out_me)
def test_pow_input_scalar_exp_scalar(): def test_pow_input_scalar_exp_scalar():
input_shape = [] input_shape = []
exp_shape = [] exp_shape = []
pow_forward_cmp(input_shape, exp_shape) pow_forward_cmp(input_shape, exp_shape)

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,8 +31,10 @@ class Net(nn.Cell):
def construct(self, x1, x2): def construct(self, x1, x2):
return self.realdiv(x1, x2) return self.realdiv(x1, x2)
x1 = np.random.randn(3,4).astype(np.float32)
x2 = np.random.randn(3,4).astype(np.float32) x1 = np.random.randn(3, 4).astype(np.float32)
x2 = np.random.randn(3, 4).astype(np.float32)
def test_net(): def test_net():
realdiv = Net() realdiv = Net()

View File

@ -18,7 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -28,11 +31,12 @@ class Net(nn.Cell):
def construct(self, x1): def construct(self, x1):
return self.reciprocal(x1) return self.reciprocal(x1)
x1 = np.random.randn(3, 4).astype(np.float32) x1 = np.random.randn(3, 4).astype(np.float32)
def test_net(): def test_net():
reciprocal = Net() reciprocal = Net()
output = reciprocal(Tensor(x1)) output = reciprocal(Tensor(x1))
print(x1) print(x1)
print(output.asnumpy()) print(output.asnumpy())

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -30,8 +33,9 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.relu(x) return self.relu(x)
def test_net(): def test_net():
x = np.random.randn(2,3,3,4).astype(np.float32) x = np.random.randn(2, 3, 3, 4).astype(np.float32)
relu = Net() relu = Net()
output = relu(Tensor(x)) output = relu(Tensor(x))
print(x) print(x)

View File

@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input, output_grad): def construct(self, input, output_grad):
return self.grad(self.network)(input, output_grad) return self.grad(self.network)(input, output_grad)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -41,9 +44,10 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.relu(x) return self.relu(x)
def test_net(): def test_net():
x = np.random.randn(2,3,3,4).astype(np.float32) x = np.random.randn(2, 3, 3, 4).astype(np.float32)
sens = np.random.randn(2,3,3,4).astype(np.float32) sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
net = Grad(Net()) net = Grad(Net())
output = net(Tensor(x), Tensor(sens)) output = net(Tensor(x), Tensor(sens))
print(len(output)) print(len(output))

View File

@ -21,8 +21,10 @@ import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -33,6 +35,7 @@ class Grad(nn.Cell):
def construct(self, input): def construct(self, input):
return self.grad(self.network)(input) return self.grad(self.network)(input)
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -41,8 +44,9 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.relu_v2(x) return self.relu_v2(x)
def test_net(): def test_net():
x = Tensor(np.ones((2,3,3,4)).astype(np.float32)) x = Tensor(np.ones((2, 3, 3, 4)).astype(np.float32))
relu_net = Net() relu_net = Net()
relu_output = relu_net(x) relu_output = relu_net(x)
net = Grad(Net()) net = Grad(Net())

View File

@ -18,8 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -29,6 +31,7 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.upsample(x) return self.upsample(x)
def test_net(): def test_net():
x = np.random.random(size=(32, 3, 32, 32)).astype(np.float32) x = np.random.random(size=(32, 3, 32, 32)).astype(np.float32)
upsample = Net() upsample = Net()

View File

@ -19,6 +19,7 @@ from mindspore.ops.composite import GradOperation
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
@ -49,4 +50,4 @@ def test_net():
grad = Grad(Net()) grad = Grad(Net())
output = grad(Tensor(image), Tensor(grads)) output = grad(Tensor(image), Tensor(grads))
print("=================output====================") print("=================output====================")
print(output) print(output)

View File

@ -20,6 +20,7 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
@ -29,12 +30,13 @@ class Net(nn.Cell):
self.scatternd = P.ScatterNd() self.scatternd = P.ScatterNd()
def construct(self, indices, update): def construct(self, indices, update):
return self.scatternd(indices, update, (3,3)) return self.scatternd(indices, update, (3, 3))
indices = np.array([[0, 1], [1, 1]]).astype(np.int32) indices = np.array([[0, 1], [1, 1]]).astype(np.int32)
update = np.array([3.2, 1.1]).astype(np.float32) update = np.array([3.2, 1.1]).astype(np.float32)
def test_net(): def test_net():
scatternd = Net() scatternd = Net()
print(indices) print(indices)

View File

@ -23,7 +23,10 @@ from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
import mindspore as ms import mindspore as ms
from mindspore.train.model import Model from mindspore.train.model import Model
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Select(Cell): class Select(Cell):
def __init__(self, dtype): def __init__(self, dtype):
super(Select, self).__init__() super(Select, self).__init__()
@ -32,6 +35,7 @@ class Select(Cell):
def construct(self, cond, inputa, inputb): def construct(self, cond, inputa, inputb):
return self.select(cond, inputa, inputb) return self.select(cond, inputa, inputb)
def me_select(cond, inputa, inputb, dtype=ms.float32): def me_select(cond, inputa, inputb, dtype=ms.float32):
net = Select(dtype) net = Select(dtype)
net.set_train() net.set_train()
@ -45,9 +49,10 @@ def me_select(cond, inputa, inputb, dtype=ms.float32):
out = model.predict(Tensor(cond), inputa, inputb) out = model.predict(Tensor(cond), inputa, inputb)
return out.asnumpy() return out.asnumpy()
def cmp_select(input_cond,inputa,inputb):
cond = input_cond > 0.5 def cmp_select(input_cond, inputa, inputb):
cond = input_cond > 0.5
out_me = me_select(cond, inputa, inputb) out_me = me_select(cond, inputa, inputb)
print(input_cond) print(input_cond)
print(cond) print(cond)
@ -55,9 +60,9 @@ def cmp_select(input_cond,inputa,inputb):
print(inputb) print(inputb)
print(out_me) print(out_me)
def test_select_2_2(): def test_select_2_2():
input_cond = np.random.rand(2, 2) input_cond = np.random.rand(2, 2)
inputa = np.random.randn(2,2).astype(np.float32) inputa = np.random.randn(2, 2).astype(np.float32)
inputb = np.random.randn(2,2).astype(np.float32) inputb = np.random.randn(2, 2).astype(np.float32)
cmp_select(input_cond,inputa,inputb) cmp_select(input_cond, inputa, inputb)

View File

@ -18,8 +18,10 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -29,6 +31,7 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.sigmoid(x) return self.sigmoid(x)
def test_net(): def test_net():
x = np.random.random(size=(2, 3)).astype(np.float32) x = np.random.random(size=(2, 3)).astype(np.float32)
sigmoid = Net() sigmoid = Net()

View File

@ -21,6 +21,7 @@ import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()

View File

@ -22,6 +22,7 @@ import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()

View File

@ -19,6 +19,7 @@ from mindspore.ops.composite import GradOperation
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
@ -42,6 +43,7 @@ class Grad(nn.Cell):
def construct(self, x, y): def construct(self, x, y):
return self.grad(self.network)(x, y) return self.grad(self.network)(x, y)
def test_net(): def test_net():
x = np.random.random(size=(2, 3, 4, 5, 6)).astype(np.float32) x = np.random.random(size=(2, 3, 4, 5, 6)).astype(np.float32)
y = np.random.random(size=(2, 3, 4, 5, 6)).astype(np.float32) y = np.random.random(size=(2, 3, 4, 5, 6)).astype(np.float32)
@ -49,4 +51,3 @@ def test_net():
output = net(Tensor(x), Tensor(y)) output = net(Tensor(x), Tensor(y))
print("=================output====================") print("=================output====================")
print(output.asnumpy()) print(output.asnumpy())

View File

@ -20,26 +20,28 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Slice(nn.Cell): class Slice(nn.Cell):
def __init__( self): def __init__(self):
super(Slice, self).__init__() super(Slice, self).__init__()
self.cat = P.Slice() self.cat = P.Slice()
self.x1 = Parameter(initializer( self.x1 = Parameter(initializer(
Tensor(np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32)), [3,2,3]), name='x1') Tensor(np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(
np.float32)), [3, 2, 3]), name='x1')
@ms_function @ms_function
def construct(self): def construct(self):
return self.cat(self.x1, (0,1, 0), (2, 1, 3)) return self.cat(self.x1, (0, 1, 0), (2, 1, 3))
def test_slice(): def test_slice():
cat = Slice() cat = Slice()
output = cat() output = cat()
expect = [[[2., -2., 2.]], expect = [[[2., -2., 2.]],
[[4., -4., 4.]]] [[4., -4., 4.]]]
print(output) print(output)
assert (output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()

View File

@ -18,6 +18,7 @@ import mindspore.nn as nn
import mindspore.context as context import mindspore.context as context
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -31,6 +31,7 @@ class Net(nn.Cell):
def construct(self, pred, gt): def construct(self, pred, gt):
return self.SmoothL1Loss(pred, gt) return self.SmoothL1Loss(pred, gt)
class Grad(nn.Cell): class Grad(nn.Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()

View File

@ -20,17 +20,22 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.Softmax = P.Softmax() self.Softmax = P.Softmax()
def construct(self, x): def construct(self, x):
return self.Softmax(x) return self.Softmax(x)
x = np.array([[5, 1]]).astype(np.float32) x = np.array([[5, 1]]).astype(np.float32)
def test_net(): def test_net():
softmax = Net() softmax = Net()
output = softmax(Tensor(x)) output = softmax(Tensor(x))

View File

@ -18,6 +18,7 @@ import mindspore.nn as nn
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
import numpy as np import numpy as np
import mindspore.context as context import mindspore.context as context
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
@ -36,4 +37,4 @@ def test_net():
labels = np.random.randn(32, 1001).astype(np.float16) labels = np.random.randn(32, 1001).astype(np.float16)
SoftmaxCrossEntropyWithLogits = Net() SoftmaxCrossEntropyWithLogits = Net()
output = SoftmaxCrossEntropyWithLogits(Tensor(features), Tensor(labels)) output = SoftmaxCrossEntropyWithLogits(Tensor(features), Tensor(labels))
#print(output.asnumpy()) # print(output.asnumpy())

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -29,7 +32,8 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.split(x) return self.split(x)
x = np.random.randn(2,4).astype(np.float32)
x = np.random.randn(2, 4).astype(np.float32)
def test_net(): def test_net():

View File

@ -20,17 +20,22 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.sqrt = P.Sqrt() self.sqrt = P.Sqrt()
def construct(self, x): def construct(self, x):
return self.sqrt(x) return self.sqrt(x)
x = np.array([1.0, 4.0, 9.0]).astype(np.float32) x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
def test_net(): def test_net():
sqrt = Net() sqrt = Net()
output = sqrt(Tensor(x)) output = sqrt(Tensor(x))

View File

@ -20,17 +20,22 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.square = P.Square() self.square = P.Square()
def construct(self, x): def construct(self, x):
return self.square(x) return self.square(x)
x = np.array([1.0, 4.0, 9.0]).astype(np.float32) x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
def test_net(): def test_net():
square = Net() square = Net()
output = square(Tensor(x)) output = square(Tensor(x))

View File

@ -19,7 +19,10 @@ from mindspore.nn import Cell
from mindspore.train.model import Model from mindspore.train.model import Model
import pytest import pytest
import mindspore.context as context import mindspore.context as context
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(Cell): class Net(Cell):
def __init__(self, begin, end, stride): def __init__(self, begin, end, stride):
super(Net, self).__init__() super(Net, self).__init__()
@ -32,6 +35,7 @@ class Net(Cell):
x = self.stridedslice(input, self.begin, self.end, self.stride) x = self.stridedslice(input, self.begin, self.end, self.stride)
return x return x
def me_stridedslice(input1, begin, end, stride): def me_stridedslice(input1, begin, end, stride):
input_me = Tensor(input1) input_me = Tensor(input1)
net = Net(begin, end, stride) net = Net(begin, end, stride)
@ -40,17 +44,19 @@ def me_stridedslice(input1, begin, end, stride):
output = model.predict(input_me) output = model.predict(input_me)
print(output.asnumpy()) print(output.asnumpy())
def test_stridedslice_input_2d(): def test_stridedslice_input_2d():
input = np.random.randn(5, 5).astype(np.int32) input = np.random.randn(5, 5).astype(np.int32)
begin = (0,0) begin = (0, 0)
end = (2,2) end = (2, 2)
stride = (1,1) stride = (1, 1)
me_stridedslice(input, begin, end, stride) me_stridedslice(input, begin, end, stride)
def test_stridedslice_input_3d(): def test_stridedslice_input_3d():
input = np.random.randn(5, 5, 5).astype(np.float32) input = np.random.randn(5, 5, 5).astype(np.float32)
begin = (0,0,0) begin = (0, 0, 0)
end = (3,3,3) end = (3, 3, 3)
stride = (1,1,1) stride = (1, 1, 1)
me_stridedslice(input, begin, end, stride) me_stridedslice(input, begin, end, stride)

View File

@ -19,8 +19,10 @@ from mindspore.nn import Cell
from mindspore.ops.composite import GradOperation from mindspore.ops.composite import GradOperation
from mindspore import context from mindspore import context
import pytest import pytest
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Grad(Cell): class Grad(Cell):
def __init__(self, network): def __init__(self, network):
super(Grad, self).__init__() super(Grad, self).__init__()
@ -31,6 +33,7 @@ class Grad(Cell):
gout = self.grad(self.network)(input, output_grad) gout = self.grad(self.network)(input, output_grad)
return gout return gout
class Net(Cell): class Net(Cell):
def __init__(self, begin, end, stride): def __init__(self, begin, end, stride):
super(Net, self).__init__() super(Net, self).__init__()
@ -43,6 +46,7 @@ class Net(Cell):
x = self.stridedslice(input, self.begin, self.end, self.stride) x = self.stridedslice(input, self.begin, self.end, self.stride)
return x return x
def me_stridedslice(input, begin, end, stride, gradients): def me_stridedslice(input, begin, end, stride, gradients):
input_me = Tensor(input) input_me = Tensor(input)
out_grad_me = Tensor(gradients) out_grad_me = Tensor(gradients)
@ -51,6 +55,7 @@ def me_stridedslice(input, begin, end, stride, gradients):
out_grad = net_me(input_me, out_grad_me) out_grad = net_me(input_me, out_grad_me)
print(out_grad.asnumpy()) print(out_grad.asnumpy())
def test_grad_stridedslice_1d(): def test_grad_stridedslice_1d():
input = np.random.randn(2).astype(np.float32) input = np.random.randn(2).astype(np.float32)
begin = (0,) begin = (0,)

View File

@ -20,17 +20,21 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
self.sub = P.Sub() self.sub = P.Sub()
def construct(self, x, y): def construct(self, x, y):
return self.sub(x, y) return self.sub(x, y)
x = np.random.randn(1,3,3,4).astype(np.float32)
y = np.random.randn(1,3,3,4).astype(np.float32) x = np.random.randn(1, 3, 3, 4).astype(np.float32)
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
def test_net(): def test_net():

View File

@ -21,6 +21,7 @@ from mindspore.ops import operations as P
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -29,9 +30,12 @@ class Net(nn.Cell):
def construct(self, x): def construct(self, x):
return self.tanh(x) return self.tanh(x)
input_shape = [1] input_shape = [1]
input_np = np.random.randn(*input_shape).astype(np.float32) input_np = np.random.randn(*input_shape).astype(np.float32)
input_me = Tensor(input_np) input_me = Tensor(input_np)
def test_net(): def test_net():
context.set_context(mode=context.GRAPH_MODE) context.set_context(mode=context.GRAPH_MODE)
tanh = Net() tanh = Net()
@ -40,4 +44,4 @@ def test_net():
out = m.predict(input_me) out = m.predict(input_me)
print("out_me.dtype={}".format(out.dtype)) print("out_me.dtype={}".format(out.dtype))
print("out_me.asnumpy={}".format(out.asnumpy())) print("out_me.asnumpy={}".format(out.asnumpy()))
return out.asnumpy() return out.asnumpy()

View File

@ -22,6 +22,7 @@ from mindspore.ops.operations import _grad_ops as G
context.set_context(device_target="Ascend") context.set_context(device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self): def __init__(self):
super(Net, self).__init__() super(Net, self).__init__()
@ -30,9 +31,12 @@ class Net(nn.Cell):
def construct(self, y, dy): def construct(self, y, dy):
return self.tanh_grad(y, dy) return self.tanh_grad(y, dy)
input_shape = [1] input_shape = [1]
input_np = np.random.randn(*input_shape).astype(np.float32) input_np = np.random.randn(*input_shape).astype(np.float32)
input_me = Tensor(input_np) input_me = Tensor(input_np)
def test_net(): def test_net():
context.set_context(mode=context.GRAPH_MODE) context.set_context(mode=context.GRAPH_MODE)
tanh_grad = Net() tanh_grad = Net()
@ -41,4 +45,4 @@ def test_net():
out = m.predict(input_me, input_me) out = m.predict(input_me, input_me)
print("out_me.dtype={}".format(out.dtype)) print("out_me.dtype={}".format(out.dtype))
print("out_me.asnumpy={}".format(out.asnumpy())) print("out_me.asnumpy={}".format(out.asnumpy()))
return out.asnumpy() return out.asnumpy()

View File

@ -20,6 +20,7 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")

View File

@ -20,7 +20,10 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self, k): def __init__(self, k):
super(Net, self).__init__() super(Net, self).__init__()
@ -32,7 +35,7 @@ class Net(nn.Cell):
def test_net(): def test_net():
x = np.random.randn(4,4).astype(np.float16) x = np.random.randn(4, 4).astype(np.float16)
k = 2 k = 2
TopK = Net(k) TopK = Net(k)
output = TopK(Tensor(x)) output = TopK(Tensor(x))
@ -41,4 +44,3 @@ def test_net():
print("***********output y*********") print("***********output y*********")
print(output[0].asnumpy()) print(output[0].asnumpy())

Some files were not shown because too many files have changed in this diff Show More