forked from mindspore-Ecosystem/mindspore
clean pylint warning in st/ops/ascend
This commit is contained in:
parent
7068e708de
commit
d40e89b1bc
|
@ -20,18 +20,23 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(enable_task_sink=True)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.add = P.TensorAdd()
|
||||
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.add(x, y)
|
||||
|
||||
x = np.ones([1,3,3,4]).astype(np.float32)
|
||||
y = np.ones([1,3,3,4]).astype(np.float32)
|
||||
|
||||
x = np.ones([1, 3, 3, 4]).astype(np.float32)
|
||||
y = np.ones([1, 3, 3, 4]).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
add = Net()
|
||||
|
|
|
@ -20,15 +20,19 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.add = P.AddN()
|
||||
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.add((x, y))
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
|
|
|
@ -18,97 +18,110 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.expand_dims = P.ExpandDims()
|
||||
|
||||
def construct(self, tensor, dim):
|
||||
return self.expand_dims(tensor, dim)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.expand_dims = P.ExpandDims()
|
||||
|
||||
def construct(self, tensor, dim):
|
||||
return self.expand_dims(tensor, dim)
|
||||
|
||||
|
||||
def test_net_bool():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
|
||||
def test_net_float64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
|
||||
net = Net()
|
||||
output = net(Tensor(x), -1)
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.expand_dims(x, -1)))
|
||||
|
|
|
@ -17,83 +17,94 @@ from mindspore.ops import operations as P
|
|||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.flatten = P.Flatten()
|
||||
|
||||
def construct(self, tensor):
|
||||
return self.flatten(tensor)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.flatten = P.Flatten()
|
||||
|
||||
def construct(self, tensor):
|
||||
return self.flatten(tensor)
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.flatten()))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.flatten()))
|
||||
|
|
|
@ -18,97 +18,110 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.isfinite = P.IsFinite()
|
||||
|
||||
def construct(self, tensor):
|
||||
return self.isfinite(tensor)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.isfinite = P.IsFinite()
|
||||
|
||||
def construct(self, tensor):
|
||||
return self.isfinite(tensor)
|
||||
|
||||
|
||||
def test_net_bool():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
|
||||
def test_net_float64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.isfinite(x)))
|
||||
|
|
|
@ -18,97 +18,110 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.reshape = P.Reshape()
|
||||
|
||||
def construct(self, tensor):
|
||||
return self.reshape(tensor, (4,4))
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.reshape = P.Reshape()
|
||||
|
||||
def construct(self, tensor):
|
||||
return self.reshape(tensor, (4, 4))
|
||||
|
||||
|
||||
def test_net_bool():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
||||
|
||||
def test_net_float64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == np.reshape(x, (4,4))))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == np.reshape(x, (4, 4))))
|
||||
|
|
|
@ -17,97 +17,110 @@ from mindspore.ops import operations as P
|
|||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.squeeze = P.Squeeze()
|
||||
|
||||
def construct(self, tensor):
|
||||
return self.squeeze(tensor)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.squeeze = P.Squeeze()
|
||||
|
||||
def construct(self, tensor):
|
||||
return self.squeeze(tensor)
|
||||
|
||||
|
||||
def test_net_bool():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_int8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_uint16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_uint32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_int64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_uint64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
|
||||
def test_net_float64():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert(np.all(output.asnumpy() == x.squeeze()))
|
||||
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float64)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert (np.all(output.asnumpy() == x.squeeze()))
|
||||
|
|
|
@ -20,24 +20,29 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
|
||||
self.variable = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='variable')
|
||||
'normal', [2, 3, 3, 4]), name='variable')
|
||||
self.accumulation = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='accumulation')
|
||||
'normal', [2, 3, 3, 4]), name='accumulation')
|
||||
self.learning_rate = Parameter(initializer(
|
||||
'normal', [1, ]), name='learning_rate')
|
||||
'normal', [1, ]), name='learning_rate')
|
||||
self.gradient = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='gradient')
|
||||
'normal', [2, 3, 3, 4]), name='gradient')
|
||||
self.momentum = Parameter(initializer(
|
||||
'normal', [1, ]), name='momentum')
|
||||
'normal', [1, ]), name='momentum')
|
||||
|
||||
def construct(self):
|
||||
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)
|
||||
|
||||
|
||||
def test_net():
|
||||
apply_momentum = Net()
|
||||
output = apply_momentum()
|
||||
|
|
|
@ -21,22 +21,25 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.bias_add_grad = G.BiasAddGrad()
|
||||
#self.dout = Parameter(initializer(
|
||||
#'normal', [2, 3, 3, 4]), name='dout')
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.bias_add_grad = G.BiasAddGrad()
|
||||
# self.dout = Parameter(initializer(
|
||||
# 'normal', [2, 3, 3, 4]), name='dout')
|
||||
|
||||
@ms_function
|
||||
def construct(self, dout):
|
||||
return self.bias_add_grad(dout)
|
||||
|
||||
|
||||
@ms_function
|
||||
def construct(self, dout):
|
||||
return self.bias_add_grad(dout)
|
||||
|
||||
dout = np.ones([2,3,4,4]).astype(np.float32)
|
||||
dout = np.ones([2, 3, 4, 4]).astype(np.float32)
|
||||
bias_add_grad = Net()
|
||||
output = bias_add_grad(Tensor(dout))
|
||||
expect_output = np.array([32.,32.,32.]).astype(np.float32)
|
||||
assert np.all(output.asnumpy()==expect_output), "bias_add_grad execute failed, please check current code commit"
|
||||
expect_output = np.array([32., 32., 32.]).astype(np.float32)
|
||||
assert np.all(output.asnumpy() == expect_output), "bias_add_grad execute failed, please check current code commit"
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -21,17 +21,20 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.bias_add_grad = G.BiasAddGrad()
|
||||
|
||||
|
||||
@ms_function
|
||||
def construct(self, dout):
|
||||
return self.bias_add_grad(dout)
|
||||
|
||||
|
||||
def test_net():
|
||||
dout = np.random.rand(1, 1001).astype(np.float32)
|
||||
bias_add_grad = Net()
|
||||
|
|
|
@ -20,32 +20,33 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
out_channel = 64
|
||||
kernel_size = 7
|
||||
self.conv = P.Conv2D(out_channel,
|
||||
kernel_size,
|
||||
mode=1,
|
||||
pad_mode="valid",
|
||||
pad=0,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
group=1)
|
||||
kernel_size,
|
||||
mode=1,
|
||||
pad_mode="valid",
|
||||
pad=0,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
group=1)
|
||||
self.w = Parameter(initializer(
|
||||
'normal', [64, 3, 7, 7]), name='w')
|
||||
|
||||
'normal', [64, 3, 7, 7]), name='w')
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
return self.conv(x, self.w)
|
||||
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32,3,224,224).astype(np.float32)
|
||||
x = np.random.randn(32, 3, 224, 224).astype(np.float32)
|
||||
conv = Net()
|
||||
output = conv(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -21,37 +21,40 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv2d_grad = G.Conv2DBackpropFilter(4,1)
|
||||
yt = Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32))
|
||||
self.y = Parameter(yt, name='y')
|
||||
self.get_shape = P.Shape()
|
||||
|
||||
@ms_function
|
||||
def construct(self, x, out):
|
||||
return self.conv2d_grad(out, x, self.get_shape(self.y))
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.conv2d_grad = G.Conv2DBackpropFilter(4, 1)
|
||||
yt = Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32))
|
||||
self.y = Parameter(yt, name='y')
|
||||
self.get_shape = P.Shape()
|
||||
|
||||
@ms_function
|
||||
def construct(self, x, out):
|
||||
return self.conv2d_grad(out, x, self.get_shape(self.y))
|
||||
|
||||
|
||||
x = Tensor(np.array([[[
|
||||
[3, 0, 1, 2, 7, 4],
|
||||
[1, 5, 8, 9, 3, 1],
|
||||
[2, 7, 2, 5, 1, 3],
|
||||
[0, 1, 3, 1, 7, 8],
|
||||
[4, 2, 1, 6, 2, 8],
|
||||
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32))
|
||||
[3, 0, 1, 2, 7, 4],
|
||||
[1, 5, 8, 9, 3, 1],
|
||||
[2, 7, 2, 5, 1, 3],
|
||||
[0, 1, 3, 1, 7, 8],
|
||||
[4, 2, 1, 6, 2, 8],
|
||||
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32))
|
||||
|
||||
out = Tensor(np.array([[[
|
||||
[ -5, -4, 0, 8],
|
||||
[-10, -2, 2, 3],
|
||||
[ 0, -2, -4, -7],
|
||||
[ -3, -2, -3, -16]]]]).astype(np.float32))
|
||||
[-5, -4, 0, 8],
|
||||
[-10, -2, 2, 3],
|
||||
[0, -2, -4, -7],
|
||||
[-3, -2, -3, -16]]]]).astype(np.float32))
|
||||
|
||||
operator = Net()
|
||||
output = operator(x, out)
|
||||
expect_out = np.array([[[[ -60., -142., -265.],[-104., -211., -322.],[-102., -144., -248.]]]]).astype(np.float32)
|
||||
expect_out = np.array([[[[-60., -142., -265.], [-104., -211., -322.], [-102., -144., -248.]]]]).astype(np.float32)
|
||||
print(output.asnumpy())
|
||||
print(expect_out)
|
||||
assert np.all(output.asnumpy()==expect_out), "conv2d_grad execute failed, please check current code commit"
|
||||
assert np.all(output.asnumpy() == expect_out), "conv2d_grad execute failed, please check current code commit"
|
||||
|
|
|
@ -21,8 +21,10 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -33,26 +35,28 @@ class Grad(nn.Cell):
|
|||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
out_channel = 512
|
||||
kernel_size = 2048
|
||||
self.conv = P.Conv2D(out_channel,
|
||||
(kernel_size, kernel_size),
|
||||
mode=1,
|
||||
pad_mode="same",
|
||||
pad=3,
|
||||
stride=2,
|
||||
dilation=1,
|
||||
group=1)
|
||||
(kernel_size, kernel_size),
|
||||
mode=1,
|
||||
pad_mode="same",
|
||||
pad=3,
|
||||
stride=2,
|
||||
dilation=1,
|
||||
group=1)
|
||||
self.w = Parameter(initializer(
|
||||
'normal', [512, 2048, 1, 1]), name='w')
|
||||
'normal', [512, 2048, 1, 1]), name='w')
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
return self.conv(x, self.w)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.ones([32, 2048, 7, 7]).astype(np.float32)
|
||||
sens = np.ones([32, 512, 7, 7]).astype(np.float32)
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -30,6 +33,7 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.dense(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32, 2048).astype(np.float32)
|
||||
net = Net()
|
||||
|
|
|
@ -21,8 +21,10 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -33,6 +35,7 @@ class Grad(nn.Cell):
|
|||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -41,6 +44,7 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.dense(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32, 2048).astype(np.float32)
|
||||
sens = np.random.randn(32, 1001).astype(np.float32)
|
||||
|
|
|
@ -17,6 +17,7 @@ from mindspore.ops import operations as P
|
|||
import mindspore.nn as nn
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target="Ascend")
|
||||
|
||||
|
|
|
@ -21,6 +21,7 @@ import mindspore.context as context
|
|||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -35,7 +38,7 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(1,64,112,112).astype(np.float32)
|
||||
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||
# mean = np.random.randn(1,16,1,1).astype(np.float32)
|
||||
# variance = np.random.randn(1,16,1,1).astype(np.float32)
|
||||
fusedBn = Net()
|
||||
|
@ -45,4 +48,3 @@ def test_net():
|
|||
|
||||
print("***********output y*********")
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -21,8 +21,11 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.composite import GradOperation
|
||||
#context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
# context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -33,6 +36,7 @@ class Grad(nn.Cell):
|
|||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -47,8 +51,8 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(1,64,112,112).astype(np.float32)
|
||||
sens = np.random.randn(1,64,112,112).astype(np.float32)
|
||||
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||
sens = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||
net = Grad(Net())
|
||||
output = net(Tensor(x), Tensor(sens))
|
||||
print("***********x*********")
|
||||
|
|
|
@ -20,6 +20,8 @@ from mindspore import Tensor
|
|||
from mindspore.common.api import ms_function
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -31,32 +33,32 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_image_gradients():
|
||||
image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32)
|
||||
expected_dy = np.array([[[[2,2],[0,0]]]]).astype(np.int32)
|
||||
expected_dx = np.array([[[[1,0],[1,0]]]]).astype(np.int32)
|
||||
image = Tensor(np.array([[[[1, 2], [3, 4]]]]), dtype=mstype.int32)
|
||||
expected_dy = np.array([[[[2, 2], [0, 0]]]]).astype(np.int32)
|
||||
expected_dx = np.array([[[[1, 0], [1, 0]]]]).astype(np.int32)
|
||||
net = Net()
|
||||
dy, dx = net(image)
|
||||
assert np.any(dx.asnumpy()-expected_dx) == False
|
||||
assert np.any(dy.asnumpy()-expected_dy) == False
|
||||
assert np.any(dx.asnumpy() - expected_dx) == False
|
||||
assert np.any(dy.asnumpy() - expected_dy) == False
|
||||
|
||||
|
||||
def test_image_gradients_multi_channel_depth():
|
||||
# 4 x 2 x 2 x 2
|
||||
dtype = mstype.int32
|
||||
image = Tensor(np.array([[[[1,2],[3,4]], [[5,6],[7,8]]],
|
||||
[[[3,5],[7,9]], [[11,13],[15,17]]],
|
||||
[[[5,10],[15,20]], [[25,30],[35,40]]],
|
||||
[[[10,20],[30,40]], [[50,60],[70,80]]]]), dtype=dtype)
|
||||
expected_dy = Tensor(np.array([[[[2,2],[0,0]], [[2,2],[0,0]]],
|
||||
[[[4,4],[0,0]], [[4,4],[0,0]]],
|
||||
[[[10,10],[0,0]], [[10,10],[0,0]]],
|
||||
[[[20,20],[0,0]], [[20,20],[0,0]]]]), dtype=dtype)
|
||||
expected_dx = Tensor(np.array([[[[1,0],[1,0]], [[1,0],[1,0]]],
|
||||
[[[2,0],[2,0]], [[2,0],[2,0]]],
|
||||
[[[5,0],[5,0]], [[5,0],[5,0]]],
|
||||
[[[10,0],[10,0]], [[10,0],[10,0]]]]), dtype=dtype)
|
||||
image = Tensor(np.array([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
|
||||
[[[3, 5], [7, 9]], [[11, 13], [15, 17]]],
|
||||
[[[5, 10], [15, 20]], [[25, 30], [35, 40]]],
|
||||
[[[10, 20], [30, 40]], [[50, 60], [70, 80]]]]), dtype=dtype)
|
||||
expected_dy = Tensor(np.array([[[[2, 2], [0, 0]], [[2, 2], [0, 0]]],
|
||||
[[[4, 4], [0, 0]], [[4, 4], [0, 0]]],
|
||||
[[[10, 10], [0, 0]], [[10, 10], [0, 0]]],
|
||||
[[[20, 20], [0, 0]], [[20, 20], [0, 0]]]]), dtype=dtype)
|
||||
expected_dx = Tensor(np.array([[[[1, 0], [1, 0]], [[1, 0], [1, 0]]],
|
||||
[[[2, 0], [2, 0]], [[2, 0], [2, 0]]],
|
||||
[[[5, 0], [5, 0]], [[5, 0], [5, 0]]],
|
||||
[[[10, 0], [10, 0]], [[10, 0], [10, 0]]]]), dtype=dtype)
|
||||
net = Net()
|
||||
dy, dx = net(image)
|
||||
|
||||
assert np.any(dx.asnumpy()-expected_dx.asnumpy()) == False
|
||||
assert np.any(dy.asnumpy()-expected_dy.asnumpy()) == False
|
||||
assert np.any(dx.asnumpy() - expected_dx.asnumpy()) == False
|
||||
assert np.any(dy.asnumpy() - expected_dy.asnumpy()) == False
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -30,8 +33,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x1, x2):
|
||||
return self.matmul(x1, x2)
|
||||
|
||||
x1 = np.random.randn(1,3).astype(np.float32)
|
||||
x2 = np.random.randn(3,4).astype(np.float32)
|
||||
|
||||
x1 = np.random.randn(1, 3).astype(np.float32)
|
||||
x2 = np.random.randn(3, 4).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
matmul = Net()
|
||||
|
|
|
@ -20,12 +20,13 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.maxpool = P.MaxPool(pad_mode="SAME", window=3, stride=2)
|
||||
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
output = self.maxpool(x)
|
||||
|
@ -33,7 +34,7 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32,64,112,112).astype(np.float32)
|
||||
x = np.random.randn(32, 64, 112, 112).astype(np.float32)
|
||||
maxpool = Net()
|
||||
output = maxpool(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -19,6 +19,7 @@ from mindspore.common.api import ms_function
|
|||
import numpy as np
|
||||
import mindspore.context as context
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
|
|
|
@ -21,8 +21,10 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -33,6 +35,7 @@ class Grad(nn.Cell):
|
|||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -43,8 +46,9 @@ class Net(nn.Cell):
|
|||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
output = self.maxpool(x)
|
||||
return output[0]
|
||||
output = self.maxpool(x)
|
||||
return output[0]
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32, 64, 112, 112).astype(np.float32)
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -30,8 +33,9 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.relu(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(2,3,3,4).astype(np.float32)
|
||||
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
relu = Net()
|
||||
output = relu(Tensor(x))
|
||||
print(x)
|
||||
|
|
|
@ -21,8 +21,10 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -33,6 +35,7 @@ class Grad(nn.Cell):
|
|||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -41,9 +44,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.relu(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(2,3,3,4).astype(np.float32)
|
||||
sens = np.random.randn(2,3,3,4).astype(np.float32)
|
||||
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
net = Grad(Net())
|
||||
output = net(Tensor(x), Tensor(sens))
|
||||
print(len(output))
|
||||
|
|
|
@ -18,18 +18,22 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.reshape = P.Reshape()
|
||||
@ms_function
|
||||
def construct(self, tensor):
|
||||
return self.reshape(tensor, (1,16))
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.reshape = P.Reshape()
|
||||
|
||||
@ms_function
|
||||
def construct(self, tensor):
|
||||
return self.reshape(tensor, (1, 16))
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
reshape = Net()
|
||||
output = reshape(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
reshape = Net()
|
||||
output = reshape(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -29,7 +32,8 @@ class Net(nn.Cell):
|
|||
@ms_function
|
||||
def construct(self, x):
|
||||
return self.simplemean(x, (-2, -1))
|
||||
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32, 2048, 7, 7).astype(np.float32)
|
||||
simplemean = Net()
|
||||
|
|
|
@ -21,8 +21,10 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -33,6 +35,7 @@ class Grad(nn.Cell):
|
|||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -41,9 +44,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.simplemean(x, (-2, -1))
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32,2048,7,7).astype(np.float32)
|
||||
sens = np.random.randn(32,2048, 1, 1).astype(np.float32)
|
||||
x = np.random.randn(32, 2048, 7, 7).astype(np.float32)
|
||||
sens = np.random.randn(32, 2048, 1, 1).astype(np.float32)
|
||||
net = Grad(Net())
|
||||
output = net(Tensor(x), Tensor(sens))
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -18,6 +18,7 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
|
@ -30,9 +31,10 @@ class Net(nn.Cell):
|
|||
def construct(self, features, labels):
|
||||
return self.SparseSoftmaxCrossEntropyWithLogits(features, labels)
|
||||
|
||||
|
||||
def np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, logits_dtype):
|
||||
num_class = logits_shape[1]
|
||||
labels = np.random.randint(low=0, high=num_class - 1, size=labels_shape).astype(np.int32)
|
||||
labels = np.random.randint(low=0, high=num_class - 1, size=labels_shape).astype(np.int32)
|
||||
logits = np.random.rand(*logits_shape).astype(logits_dtype)
|
||||
features = logits
|
||||
features_reshape = np.reshape(features, [-1, num_class])
|
||||
|
@ -48,7 +50,7 @@ def np_sparse_softmax_cross_entropy_with_logits(labels_shape, logits_shape, logi
|
|||
loss = -np.sum(labels_mat * np.log(probs + 1.0e-20), axis=1)
|
||||
bp_res = np.reshape(bp, features.shape)
|
||||
loss_res = np.reshape(loss, labels.shape)
|
||||
loss_res = np.sum(loss_res, axis=0)/loss_res.shape[0]
|
||||
loss_res = np.sum(loss_res, axis=0) / loss_res.shape[0]
|
||||
return labels, logits, loss_res, bp_res
|
||||
|
||||
|
||||
|
@ -65,4 +67,6 @@ def test_net():
|
|||
print(loss_me.asnumpy().flatten())
|
||||
print("-------------------------")
|
||||
print(expect)
|
||||
|
||||
|
||||
test_net()
|
||||
|
|
|
@ -21,6 +21,7 @@ import mindspore.context as context
|
|||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, is_grad=False):
|
||||
super(Net, self).__init__()
|
||||
|
|
|
@ -20,11 +20,13 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""Net definition"""
|
||||
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.AssignAdd = P.AssignAdd()
|
||||
|
@ -39,8 +41,8 @@ class Net(nn.Cell):
|
|||
def test_net():
|
||||
"""test AssignAdd"""
|
||||
net = Net()
|
||||
x = Tensor(np.ones([1]).astype(np.float32)*100)
|
||||
x = Tensor(np.ones([1]).astype(np.float32) * 100)
|
||||
|
||||
print("MyPrintResult dataX:", x)
|
||||
result = net(x)
|
||||
print("MyPrintResult data::", result.asnumpy())
|
||||
print("MyPrintResult data::", result.asnumpy())
|
||||
|
|
|
@ -20,11 +20,13 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""Net definition"""
|
||||
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.AssignSub = P.AssignSub()
|
||||
|
@ -39,8 +41,8 @@ class Net(nn.Cell):
|
|||
def test_net():
|
||||
"""test AssignSub"""
|
||||
net = Net()
|
||||
x = Tensor(np.ones([1]).astype(np.int32)*100)
|
||||
x = Tensor(np.ones([1]).astype(np.int32) * 100)
|
||||
|
||||
print("MyPrintResult dataX:", x)
|
||||
result = net(x)
|
||||
print("MyPrintResult data::", result.asnumpy())
|
||||
print("MyPrintResult data::", result.asnumpy())
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, keep_dims, axis):
|
||||
super(Net, self).__init__()
|
||||
|
@ -31,8 +34,10 @@ class Net(nn.Cell):
|
|||
def construct(self, inputs):
|
||||
return self.reduce_mean(inputs, self.axis)
|
||||
|
||||
|
||||
x1 = np.random.randn(64).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
keepdims = False
|
||||
axis = -1
|
||||
|
|
|
@ -21,6 +21,7 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -29,8 +30,9 @@ class Net(nn.Cell):
|
|||
def construct(self, x, y):
|
||||
return self.add(x, y)
|
||||
|
||||
x = np.random.randn(1,3,3,4).astype(np.float32)
|
||||
y = np.random.randn(1,3,3,4).astype(np.float32)
|
||||
|
||||
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
|
|
|
@ -20,15 +20,19 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.add = P.AddN()
|
||||
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.add((x, y))
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
|
|
|
@ -19,6 +19,7 @@ from mindspore.nn import Dense, SoftmaxCrossEntropyWithLogits
|
|||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", impl_type="tbe")
|
||||
context.set_context(enable_task_sink=True)
|
||||
|
||||
|
@ -44,16 +45,16 @@ class Adam:
|
|||
label = Tensor(label_np_onehot)
|
||||
|
||||
ms_dense = Dense(in_channels=self.input_channels,
|
||||
out_channels=self.output_channels,
|
||||
weight_init=weight_np,
|
||||
bias_init=bias, has_bias=True)
|
||||
out_channels=self.output_channels,
|
||||
weight_init=weight_np,
|
||||
bias_init=bias, has_bias=True)
|
||||
criterion = SoftmaxCrossEntropyWithLogits()
|
||||
optimizer = nn.Adam(ms_dense.trainable_params(),
|
||||
learning_rate=1e-3,
|
||||
beta1=0.9, beta2=0.999, eps=self.epsilon,
|
||||
use_locking=False,
|
||||
use_nesterov=False, weight_decay=0.0,
|
||||
loss_scale=1.0)
|
||||
learning_rate=1e-3,
|
||||
beta1=0.9, beta2=0.999, eps=self.epsilon,
|
||||
use_locking=False,
|
||||
use_nesterov=False, weight_decay=0.0,
|
||||
loss_scale=1.0)
|
||||
|
||||
net_with_criterion = WithLossCell(ms_dense, criterion)
|
||||
train_network = TrainOneStepCell(net_with_criterion, optimizer)
|
||||
|
@ -68,5 +69,5 @@ class Adam:
|
|||
|
||||
|
||||
def test_adam():
|
||||
fact = Adam(batch_num=8, input_channels=20, output_channels=5, epoch=5, lr=0.1, weight_decay=0.0, epsilon= 1e-8)
|
||||
fact = Adam(batch_num=8, input_channels=20, output_channels=5, epoch=5, lr=0.1, weight_decay=0.0, epsilon=1e-8)
|
||||
fact.train_mindspore_impl()
|
||||
|
|
|
@ -21,23 +21,26 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.apply_momentum = P.ApplyMomentum(gradient_scale=1024.0)
|
||||
self.variable = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='variable')
|
||||
'normal', [2, 3, 3, 4]), name='variable')
|
||||
self.accumulation = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='accumulation')
|
||||
'normal', [2, 3, 3, 4]), name='accumulation')
|
||||
self.learning_rate = Parameter(initializer(
|
||||
'normal', [1, ]), name='learning_rate')
|
||||
'normal', [1, ]), name='learning_rate')
|
||||
self.gradient = Parameter(initializer(
|
||||
'normal', [2, 3, 3, 4]), name='gradient')
|
||||
'normal', [2, 3, 3, 4]), name='gradient')
|
||||
self.momentum = Parameter(initializer(
|
||||
'normal', [1, ]), name='momentum')
|
||||
'normal', [1, ]), name='momentum')
|
||||
|
||||
def construct(self):
|
||||
return self.apply_momentum(self.variable, self.accumulation, self.learning_rate, self.gradient, self.momentum)
|
||||
|
||||
|
||||
def test_net():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
apply_momentum = Net()
|
||||
|
|
|
@ -19,8 +19,10 @@ from mindspore.nn import Cell
|
|||
from mindspore.train.model import Model
|
||||
import pytest
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -30,17 +32,20 @@ class Net(Cell):
|
|||
x = self.batchmatmul(inputa, inputb)
|
||||
return x
|
||||
|
||||
|
||||
def tf_me_batchmatmul(inputa, inputb):
|
||||
net = Net()
|
||||
net.set_train()
|
||||
model = Model(net)
|
||||
out_me = model.predict(Tensor(inputa), Tensor(inputb))
|
||||
|
||||
|
||||
def test_batchmatmul_normal_shape1():
|
||||
inputa = np.random.randn(128, 16, 128).astype(np.float32)
|
||||
inputb = np.random.randn(128, 128, 64).astype(np.float32)
|
||||
tf_me_batchmatmul(Tensor(inputa), Tensor(inputb))
|
||||
|
||||
|
||||
def test_batchmatmul_normal_shape2():
|
||||
inputa = np.random.randn(1, 16, 128, 128).astype(np.float32)
|
||||
inputb = np.random.randn(1, 16, 128, 64).astype(np.float32)
|
||||
|
|
|
@ -21,6 +21,7 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -35,7 +36,7 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(1,64,112,112).astype(np.float32)
|
||||
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||
# mean = np.random.randn(1,16,1,1).astype(np.float32)
|
||||
# variance = np.random.randn(1,16,1,1).astype(np.float32)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
@ -55,4 +56,3 @@ def test_net():
|
|||
|
||||
print("***********output y*********")
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -21,8 +21,11 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.composite import GradOperation
|
||||
#context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
# context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -48,7 +51,7 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(1,64,112,112).astype(np.float32)
|
||||
sens = np.random.randn(1,64,112,112).astype(np.float32)
|
||||
x = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||
sens = np.random.randn(1, 64, 112, 112).astype(np.float32)
|
||||
net = Grad(Net())
|
||||
output = net(Tensor(x), Tensor(sens))
|
||||
|
|
|
@ -20,11 +20,13 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""Net definition"""
|
||||
|
||||
def __init__(self,
|
||||
output_channels,
|
||||
bias_init='zeros',
|
||||
|
@ -51,4 +53,3 @@ def test_compile():
|
|||
# enable it when staging function is ready
|
||||
output = net(input_data)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -21,7 +21,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -31,6 +34,7 @@ class Net(nn.Cell):
|
|||
def construct(self, dout):
|
||||
return self.bias_add_grad(dout)
|
||||
|
||||
|
||||
def test_net():
|
||||
dout = np.random.rand(1, 1001).astype(np.float32)
|
||||
bias_add_grad = Net()
|
||||
|
|
|
@ -20,11 +20,12 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__( self):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
||||
self.cat = P.Concat(axis=1)
|
||||
|
@ -46,4 +47,4 @@ def test_net():
|
|||
print(np.arange(2 * 2).reshape(2, 2))
|
||||
print(np.arange(2 * 3).reshape(2, 3))
|
||||
print(output)
|
||||
assert(output.asnumpy() == expect).all()
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
|
|
@ -21,31 +21,30 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
out_channel = 64
|
||||
kernel_size = 7
|
||||
self.conv = P.Conv2D(out_channel,
|
||||
kernel_size,
|
||||
mode=1,
|
||||
pad_mode="valid",
|
||||
pad=0,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
group=1)
|
||||
kernel_size,
|
||||
mode=1,
|
||||
pad_mode="valid",
|
||||
pad=0,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
group=1)
|
||||
self.w = Parameter(initializer(
|
||||
'normal', [64, 3, 7, 7]), name='w')
|
||||
|
||||
'normal', [64, 3, 7, 7]), name='w')
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
return self.conv(x, self.w)
|
||||
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32,3,224,224).astype(np.float32)
|
||||
x = np.random.randn(32, 3, 224, 224).astype(np.float32)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
conv = Net()
|
||||
output = conv(Tensor(x))
|
||||
|
|
|
@ -21,6 +21,7 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target='Ascend')
|
||||
|
||||
|
||||
|
@ -37,19 +38,21 @@ class Net(nn.Cell):
|
|||
stride=1,
|
||||
dilation=1,
|
||||
group=1)
|
||||
self.w = Parameter(initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='w')
|
||||
self.w = Parameter(
|
||||
initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]),
|
||||
name='w')
|
||||
self.x = Parameter(initializer(Tensor(np.array([[[
|
||||
[3, 0, 1, 2, 7, 4],
|
||||
[1, 5, 8, 9, 3, 1],
|
||||
[2, 7, 2, 5, 1, 3],
|
||||
[0, 1, 3, 1, 7, 8],
|
||||
[4, 2, 1, 6, 2, 8],
|
||||
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1,1,6,6]), name='x')
|
||||
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1, 1, 6, 6]), name='x')
|
||||
self.out = Parameter(initializer(Tensor(np.array([[[
|
||||
[ -5, -4, 0, 8],
|
||||
[-10, -2, 2, 3],
|
||||
[ 0, -2, -4, -7],
|
||||
[ -3, -2, -3, -16]]]]).astype(np.float32)),[1,1,4,4]), name='y')
|
||||
[-5, -4, 0, 8],
|
||||
[-10, -2, 2, 3],
|
||||
[0, -2, -4, -7],
|
||||
[-3, -2, -3, -16]]]]).astype(np.float32)), [1, 1, 4, 4]), name='y')
|
||||
self.get_shape = P.Shape()
|
||||
|
||||
@ms_function
|
||||
|
@ -67,7 +70,7 @@ def test_conv2d_backprop_filter():
|
|||
[-104, -211, -322]
|
||||
[-102, -144, -248]]]]
|
||||
"""
|
||||
expect = np.array([[[[ -60, -142, -265],
|
||||
expect = np.array([[[[-60, -142, -265],
|
||||
[-104, -211, -322],
|
||||
[-102, -144, -248]]]]).astype(np.float32)
|
||||
print(output)
|
||||
|
|
|
@ -20,6 +20,7 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
|
@ -36,19 +37,21 @@ class Net(nn.Cell):
|
|||
stride=1,
|
||||
dilation=1,
|
||||
group=1)
|
||||
self.w = Parameter(initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]), name='w')
|
||||
self.w = Parameter(
|
||||
initializer(Tensor(np.array([[[[1, 0, -1], [1, 0, -1], [1, 0, -1]]]]).astype(np.float32)), [1, 1, 3, 3]),
|
||||
name='w')
|
||||
self.x = Parameter(initializer(Tensor(np.array([[[
|
||||
[3, 0, 1, 2, 7, 4],
|
||||
[1, 5, 8, 9, 3, 1],
|
||||
[2, 7, 2, 5, 1, 3],
|
||||
[0, 1, 3, 1, 7, 8],
|
||||
[4, 2, 1, 6, 2, 8],
|
||||
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1,1,6,6]), name='x')
|
||||
[2, 4, 5, 2, 3, 9]]]]).astype(np.float32)), [1, 1, 6, 6]), name='x')
|
||||
self.out = Parameter(initializer(Tensor(np.array([[[
|
||||
[ -5, -4, 0, 8],
|
||||
[-10, -2, 2, 3],
|
||||
[ 0, -2, -4, -7],
|
||||
[ -3, -2, -3, -16]]]]).astype(np.float32)),[1,1,4,4]), name='y')
|
||||
[-5, -4, 0, 8],
|
||||
[-10, -2, 2, 3],
|
||||
[0, -2, -4, -7],
|
||||
[-3, -2, -3, -16]]]]).astype(np.float32)), [1, 1, 4, 4]), name='y')
|
||||
self.get_shape = P.Shape()
|
||||
|
||||
@ms_function
|
||||
|
@ -69,11 +72,11 @@ def test_conv2d_backprop_input():
|
|||
[ -3, -4, -4, -19, 7, 23]
|
||||
[ -3, -2, 0, -14, 3, 16]]]]
|
||||
"""
|
||||
expect = np.array([[[[ -5, -4, 5, 12, 0, -8],
|
||||
[-15, -6, 17, 17, -2, -11],
|
||||
[-15, -8, 13, 12, 2, -4],
|
||||
[-13, -6, 8, -14, 5, 20],
|
||||
[ -3, -4, -4, -19, 7, 23],
|
||||
[ -3, -2, 0, -14, 3, 16]]]]).astype(np.float32)
|
||||
expect = np.array([[[[-5, -4, 5, 12, 0, -8],
|
||||
[-15, -6, 17, 17, -2, -11],
|
||||
[-15, -8, 13, 12, 2, -4],
|
||||
[-13, -6, 8, -14, 5, 20],
|
||||
[-3, -4, -4, -19, 7, 23],
|
||||
[-3, -2, 0, -14, 3, 16]]]]).astype(np.float32)
|
||||
print(output)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
|
|
@ -20,9 +20,11 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
from mindspore import log as logger
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -33,7 +35,7 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(2,5,8).astype(np.float32)
|
||||
x = np.random.randn(2, 5, 8).astype(np.float32)
|
||||
mask = np.random.randn(16).astype(np.uint8)
|
||||
keep_prob = 1
|
||||
|
||||
|
@ -48,4 +50,3 @@ def test_net():
|
|||
|
||||
logger.info("***********output y*********")
|
||||
logger.info(output.asnumpy())
|
||||
|
||||
|
|
|
@ -21,6 +21,7 @@ import math
|
|||
import pytest
|
||||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
|
@ -52,6 +53,7 @@ def test_gelu_input_dim_0():
|
|||
with pytest.raises(ValueError):
|
||||
gelu_forward_cmp(input_shape)
|
||||
|
||||
|
||||
def test_gelu_input_dim_10240_1024():
|
||||
input_shape = [10240, 1024]
|
||||
gelu_forward_cmp(input_shape)
|
||||
|
@ -96,6 +98,7 @@ def test_gelu_input_dim_128_4096():
|
|||
input_shape = [128, 4096]
|
||||
gelu_forward_cmp(input_shape)
|
||||
|
||||
|
||||
@pytest.mark.lower_bs
|
||||
def test_gelu_input_dim_160_1024():
|
||||
input_shape = [160, 1024]
|
||||
|
|
|
@ -25,6 +25,7 @@ from mindspore import log as logger
|
|||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -55,6 +56,7 @@ def gelu_backward_cmp(input_shape):
|
|||
logger.info("---------me--------")
|
||||
logger.info(output_grad_me)
|
||||
|
||||
|
||||
# ---------- LARGE INPUT ---------------
|
||||
|
||||
class MEGeluLargeIn(Cell):
|
||||
|
@ -67,6 +69,7 @@ class MEGeluLargeIn(Cell):
|
|||
x = self.matmul(x1, x2)
|
||||
return self.gelu(x)
|
||||
|
||||
|
||||
class GradLargeIn(Cell):
|
||||
def __init__(self, network):
|
||||
super(GradLargeIn, self).__init__()
|
||||
|
@ -86,5 +89,5 @@ def gelu_backward_me_large_in_impl(x1, x2, output_grad):
|
|||
|
||||
|
||||
def test_grad_gelu_input_10240_1024():
|
||||
input_shape = [10240,1024]
|
||||
input_shape = [10240, 1024]
|
||||
gelu_backward_cmp(input_shape)
|
||||
|
|
|
@ -20,8 +20,10 @@ from mindspore.common.tensor import Tensor
|
|||
from mindspore.train.model import Model
|
||||
from mindspore import log as logger
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Greater(Cell):
|
||||
def __init__(self):
|
||||
super(Greater, self).__init__()
|
||||
|
@ -30,6 +32,7 @@ class Greater(Cell):
|
|||
def construct(self, inputa, inputb):
|
||||
return self.greater(inputa, inputb)
|
||||
|
||||
|
||||
def me_greater(inputa, inputb):
|
||||
net = Greater()
|
||||
net.set_train()
|
||||
|
@ -42,10 +45,11 @@ def me_greater(inputa, inputb):
|
|||
logger.info(inputb)
|
||||
return out.asnumpy()
|
||||
|
||||
|
||||
@pytest.mark.ssd_tbe
|
||||
def test_greater_2d_scalar0():
|
||||
a = np.random.randint(-5, 5, [8, 32]).astype(np.int32)
|
||||
b = np.random.randint(-5, 5, [8, 32]).astype(np.int32)
|
||||
out_me = me_greater(Tensor(a), Tensor(b))
|
||||
logger.info("Check me result:")
|
||||
logger.info(out_me)
|
||||
logger.info(out_me)
|
||||
|
|
|
@ -20,8 +20,10 @@ from mindspore.train.model import Model
|
|||
from mindspore import log as logger
|
||||
import pytest
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta):
|
||||
super(Net, self).__init__()
|
||||
|
@ -31,6 +33,7 @@ class Net(Cell):
|
|||
x = self.layernorm(input)
|
||||
return x
|
||||
|
||||
|
||||
def pt_me_layernorm(input_data, normalized_shape, gamma, beta, axis):
|
||||
net = Net(normalized_shape, begin_norm_axis=axis,
|
||||
begin_params_axis=axis,
|
||||
|
@ -42,6 +45,7 @@ def pt_me_layernorm(input_data, normalized_shape, gamma, beta, axis):
|
|||
logger.info("Check me result:")
|
||||
logger.info(out_me.asnumpy())
|
||||
|
||||
|
||||
@pytest.mark.lower_bs
|
||||
def test_normal_layernorm_1_128_1024_axis_2():
|
||||
"""
|
||||
|
@ -52,4 +56,4 @@ def test_normal_layernorm_1_128_1024_axis_2():
|
|||
gamma.fill(1.1)
|
||||
beta = np.random.randn(1024).astype(np.float32)
|
||||
beta.fill(0.1)
|
||||
pt_me_layernorm(input_data, (1024, ), gamma, beta, 2)
|
||||
pt_me_layernorm(input_data, (1024,), gamma, beta, 2)
|
||||
|
|
|
@ -19,18 +19,21 @@ from mindspore.nn import Cell
|
|||
from mindspore.ops.composite import GradOperation
|
||||
from mindspore import log as logger
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, input, output_grad,):
|
||||
def construct(self, input, output_grad, ):
|
||||
gout = self.grad(self.network)(input, output_grad)
|
||||
return gout
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta):
|
||||
super(Net, self).__init__()
|
||||
|
@ -40,6 +43,7 @@ class Net(Cell):
|
|||
x = self.layernorm(input)
|
||||
return x
|
||||
|
||||
|
||||
def py_me_layernorm_grad(input_data, normalized_shape, gamma, beta, axis, gradients):
|
||||
input_me = Tensor(input_data)
|
||||
net_me = Grad(Net(normalized_shape, begin_norm_axis=axis,
|
||||
|
@ -52,6 +56,7 @@ def py_me_layernorm_grad(input_data, normalized_shape, gamma, beta, axis, gradie
|
|||
logger.info("Check me result:")
|
||||
logger.info(out_grad.asnumpy())
|
||||
|
||||
|
||||
def test_normal_layernorm_grad_normalize_2d():
|
||||
"""
|
||||
1 input[1, 128, 1024],normalized_shape=[1024],element_affine=False
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,8 +31,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x1, x2):
|
||||
return self.less(x1, x2)
|
||||
|
||||
x1 = np.random.randn(3,4).astype(np.float16)
|
||||
x2 = np.random.randn(3,4).astype(np.float16)
|
||||
|
||||
x1 = np.random.randn(3, 4).astype(np.float16)
|
||||
x2 = np.random.randn(3, 4).astype(np.float16)
|
||||
|
||||
|
||||
def test_net():
|
||||
less = Net()
|
||||
|
@ -37,4 +42,3 @@ def test_net():
|
|||
print(x1)
|
||||
print(x2)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,8 +31,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x1, x2):
|
||||
return self.less_equal(x1, x2)
|
||||
|
||||
x1 = np.random.randn(3,4).astype(np.float16)
|
||||
x2 = np.random.randn(3,4).astype(np.float16)
|
||||
|
||||
x1 = np.random.randn(3, 4).astype(np.float16)
|
||||
x2 = np.random.randn(3, 4).astype(np.float16)
|
||||
|
||||
|
||||
def test_net():
|
||||
less_equal = Net()
|
||||
|
@ -37,4 +42,3 @@ def test_net():
|
|||
print(x1)
|
||||
print(x2)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,12 +31,14 @@ class Net(nn.Cell):
|
|||
def construct(self, x1, x2):
|
||||
return self.logical_and(x1, x2)
|
||||
|
||||
|
||||
x1 = [True, True, False, False, True, True, False, False]
|
||||
x2 = [True, False, False, True, True, False, False, True]
|
||||
|
||||
|
||||
def test_net():
|
||||
logical_and = Net()
|
||||
output = logical_and(Tensor(x1), Tensor(x2))
|
||||
print(x1)
|
||||
print(x2)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,11 +31,12 @@ class Net(nn.Cell):
|
|||
def construct(self, x1):
|
||||
return self.logical_not(x1)
|
||||
|
||||
|
||||
x1 = [True, True, False, False, True, True, False, False]
|
||||
|
||||
|
||||
def test_net():
|
||||
logical_not = Net()
|
||||
output = logical_not(Tensor(x1))
|
||||
print(x1)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,12 +31,14 @@ class Net(nn.Cell):
|
|||
def construct(self, x1, x2):
|
||||
return self.logical_or(x1, x2)
|
||||
|
||||
|
||||
x1 = [True, True, False, False, True, True, False, False]
|
||||
x2 = [True, False, False, True, True, False, False, True]
|
||||
|
||||
|
||||
def test_net():
|
||||
logical_or = Net()
|
||||
output = logical_or(Tensor(x1), Tensor(x2))
|
||||
print(x1)
|
||||
print(x2)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -21,6 +21,7 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -30,8 +31,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x1, x2):
|
||||
return self.matmul(x1, x2)
|
||||
|
||||
x1 = np.random.randn(1,3).astype(np.float32)
|
||||
x2 = np.random.randn(3,4).astype(np.float32)
|
||||
|
||||
x1 = np.random.randn(1, 3).astype(np.float32)
|
||||
x2 = np.random.randn(3, 4).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -30,8 +33,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x1, x2):
|
||||
return self.matmul(x1, x2)
|
||||
|
||||
x1 = np.random.randn(10,1).astype(np.float32)
|
||||
x2 = np.random.randn(100,1).astype(np.float32)
|
||||
|
||||
x1 = np.random.randn(10, 1).astype(np.float32)
|
||||
x2 = np.random.randn(100, 1).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
matmul = Net()
|
||||
|
|
|
@ -22,14 +22,16 @@ from mindspore.ops import operations as P
|
|||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Max(nn.Cell):
|
||||
def __init__(self,dtype):
|
||||
def __init__(self, dtype):
|
||||
super(Max, self).__init__()
|
||||
self.max = P.Maximum()
|
||||
|
||||
def construct(self, inputa, inputb):
|
||||
return self.max(inputa, inputb)
|
||||
|
||||
|
||||
def me_max(inputa, inputb, dtype=ms.float32):
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
net = Max(dtype)
|
||||
|
@ -44,14 +46,16 @@ def me_max(inputa, inputb, dtype=ms.float32):
|
|||
print(out)
|
||||
return out.asnumpy()
|
||||
|
||||
def cmp_max(a,b):
|
||||
|
||||
def cmp_max(a, b):
|
||||
out = np.maximum(a, b)
|
||||
out_ms = me_max(a, b)
|
||||
print("-------ms------")
|
||||
print("numpy out :{}".format(out))
|
||||
print("ms out :{}".format(out_ms))
|
||||
|
||||
|
||||
def test_maximum_2_2():
|
||||
a = np.random.randn(2, 2).astype(np.float32)
|
||||
b = np.random.randn(2, 2).astype(np.float32)
|
||||
cmp_max(a,b)
|
||||
cmp_max(a, b)
|
||||
|
|
|
@ -22,6 +22,7 @@ from mindspore.ops import operations as P
|
|||
context.set_context(device_target="Ascend")
|
||||
grad = C.GradOperation('get_all', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
class MaxNetMe(Cell):
|
||||
def __init__(self):
|
||||
super(MaxNetMe, self).__init__()
|
||||
|
@ -31,6 +32,7 @@ class MaxNetMe(Cell):
|
|||
x = self.max(inputA, inputB)
|
||||
return x
|
||||
|
||||
|
||||
class GradWrap(Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
|
@ -40,6 +42,7 @@ class GradWrap(Cell):
|
|||
gout = grad(self.network)(inputA, inputB, sens)
|
||||
return gout
|
||||
|
||||
|
||||
def gen_data(inputA_np, inputB_np, grad=None):
|
||||
inputA_me = inputA_np
|
||||
if isinstance(inputA_np, np.ndarray) == True:
|
||||
|
@ -61,7 +64,8 @@ def gen_data(inputA_np, inputB_np, grad=None):
|
|||
print(output[0].asnumpy())
|
||||
print(output[1].asnumpy())
|
||||
|
||||
|
||||
def test_net():
|
||||
inputA_np = np.random.randn(1, 3, 2, 2).astype(np.float32)
|
||||
inputB_np = np.random.randn(1, 3, 2, 2).astype(np.float32)
|
||||
gen_data(inputA_np, inputB_np)
|
||||
gen_data(inputA_np, inputB_np)
|
||||
|
|
|
@ -19,12 +19,12 @@ from mindspore.common.api import ms_function
|
|||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.maxpool = P.MaxPool(padding="SAME", ksize=3, strides=2)
|
||||
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
output = self.maxpool(x)
|
||||
|
@ -32,7 +32,7 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32,64,112,112).astype(np.float16)
|
||||
x = np.random.randn(32, 64, 112, 112).astype(np.float16)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
maxpool = Net()
|
||||
output = maxpool(Tensor(x))
|
||||
|
|
|
@ -19,6 +19,7 @@ from mindspore.common.api import ms_function
|
|||
import numpy as np
|
||||
import mindspore.context as context
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
|
|
|
@ -22,7 +22,10 @@ from mindspore.common.initializer import initializer
|
|||
from mindspore.common.parameter import Parameter
|
||||
import mindspore as ms
|
||||
from mindspore.train.model import Model
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Min(nn.Cell):
|
||||
def __init__(self, dtype):
|
||||
super(Min, self).__init__()
|
||||
|
@ -46,7 +49,8 @@ def me_min(inputa, inputb, dtype=ms.float32):
|
|||
print(out)
|
||||
return out.asnumpy()
|
||||
|
||||
def cmp_min(a,b):
|
||||
|
||||
def cmp_min(a, b):
|
||||
print(a)
|
||||
print(b)
|
||||
|
||||
|
@ -55,8 +59,8 @@ def cmp_min(a,b):
|
|||
out_me = me_min(a, b)
|
||||
print(out_me)
|
||||
|
||||
|
||||
def test_minimum_2_2():
|
||||
a = np.random.randn(2, 2, 1, 1).astype(np.float32)
|
||||
b = np.random.randn(2, 2, 1, 1).astype(np.float32)
|
||||
cmp_min(a,b)
|
||||
|
||||
cmp_min(a, b)
|
||||
|
|
|
@ -22,6 +22,8 @@ from mindspore.ops.operations import Minimum
|
|||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
grad = C.GradOperation('get_all', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
class MinNetMe(Cell):
|
||||
def __init__(self):
|
||||
super(MinNetMe, self).__init__()
|
||||
|
@ -41,6 +43,7 @@ class GradWrap(Cell):
|
|||
gout = grad(self.network)(inputA, inputB, sens)
|
||||
return gout
|
||||
|
||||
|
||||
def gen_data(inputA_np, inputB_np, grad=None):
|
||||
inputA_me = inputA_np
|
||||
if isinstance(inputA_np, np.ndarray) == True:
|
||||
|
@ -51,7 +54,7 @@ def gen_data(inputA_np, inputB_np, grad=None):
|
|||
inputB_me = Tensor(inputB_np)
|
||||
|
||||
if grad is None:
|
||||
grad = np.random.randn(1, 3, 2, 2).astype(np.float32)
|
||||
grad = np.random.randn(1, 3, 2, 2).astype(np.float32)
|
||||
|
||||
print(inputA_np)
|
||||
print(inputB_np)
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,8 +31,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x1, x2):
|
||||
return self.mul(x1, x2)
|
||||
|
||||
x1 = np.random.randn(3,4).astype(np.float32)
|
||||
x2 = np.random.randn(3,4).astype(np.float32)
|
||||
|
||||
x1 = np.random.randn(3, 4).astype(np.float32)
|
||||
x2 = np.random.randn(3, 4).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
mul = Net()
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,8 +31,8 @@ class Net(nn.Cell):
|
|||
def construct(self):
|
||||
return self.npu_alloc_float_status()
|
||||
|
||||
|
||||
def test_net():
|
||||
npu_alloc_float_status = Net()
|
||||
output = npu_alloc_float_status()
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,11 +31,12 @@ class Net(nn.Cell):
|
|||
def construct(self, x1):
|
||||
return self.npu_clear_float_status(x1)
|
||||
|
||||
|
||||
x1 = np.random.randn(8).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
npu_clear_float_status = Net()
|
||||
output = npu_clear_float_status(Tensor(x1))
|
||||
print(x1)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,11 +31,12 @@ class Net(nn.Cell):
|
|||
def construct(self, x1):
|
||||
return self.npu_get_float_status(x1)
|
||||
|
||||
|
||||
x1 = np.random.randn(8).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
npu_get_float_status = Net()
|
||||
output = npu_get_float_status(Tensor(x1))
|
||||
print(x1)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -18,21 +18,24 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.pad = P.Pad(paddings=((3,2), (2,3)))
|
||||
self.pad = P.Pad(paddings=((3, 2), (2, 3)))
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
x = self.pad(x)
|
||||
return x
|
||||
|
||||
|
||||
x = np.random.random(size=(2, 2)).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
pad = Net()
|
||||
output = pad(Tensor(x))
|
||||
|
|
|
@ -23,8 +23,10 @@ from mindspore.common.initializer import initializer
|
|||
from mindspore.common.parameter import Parameter
|
||||
import mindspore as ms
|
||||
from mindspore.train.model import Model
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class PowMe(Cell):
|
||||
def __init__(self):
|
||||
super(PowMe, self).__init__()
|
||||
|
@ -33,6 +35,7 @@ class PowMe(Cell):
|
|||
def construct(self, input, exp):
|
||||
return self.pow(input, exp)
|
||||
|
||||
|
||||
def pow_forward_me_impl(input, exp):
|
||||
n = PowMe()
|
||||
n.set_train()
|
||||
|
@ -40,6 +43,7 @@ def pow_forward_me_impl(input, exp):
|
|||
out = m.predict(input, exp)
|
||||
return out.asnumpy()
|
||||
|
||||
|
||||
def pow_forward_cmp(input_shape, exp_shape):
|
||||
if len(input_shape) == 0:
|
||||
input_np = np.absolute(np.random.randn())
|
||||
|
@ -54,14 +58,14 @@ def pow_forward_cmp(input_shape, exp_shape):
|
|||
exp_np = np.absolute(np.random.randn(*exp_shape).astype(np.float32))
|
||||
exp_tf = exp_np
|
||||
exp_me = Tensor(exp_np, dtype=ms.float32)
|
||||
|
||||
|
||||
out_me = pow_forward_me_impl(input_me, exp_me)
|
||||
print(input_me)
|
||||
print(exp_me)
|
||||
print(out_me)
|
||||
|
||||
|
||||
|
||||
def test_pow_input_scalar_exp_scalar():
|
||||
input_shape = []
|
||||
exp_shape = []
|
||||
pow_forward_cmp(input_shape, exp_shape)
|
||||
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,8 +31,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x1, x2):
|
||||
return self.realdiv(x1, x2)
|
||||
|
||||
x1 = np.random.randn(3,4).astype(np.float32)
|
||||
x2 = np.random.randn(3,4).astype(np.float32)
|
||||
|
||||
x1 = np.random.randn(3, 4).astype(np.float32)
|
||||
x2 = np.random.randn(3, 4).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
realdiv = Net()
|
||||
|
|
|
@ -18,7 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -28,11 +31,12 @@ class Net(nn.Cell):
|
|||
def construct(self, x1):
|
||||
return self.reciprocal(x1)
|
||||
|
||||
|
||||
x1 = np.random.randn(3, 4).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
reciprocal = Net()
|
||||
output = reciprocal(Tensor(x1))
|
||||
print(x1)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -30,8 +33,9 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.relu(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(2,3,3,4).astype(np.float32)
|
||||
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
relu = Net()
|
||||
output = relu(Tensor(x))
|
||||
print(x)
|
||||
|
|
|
@ -21,8 +21,10 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -33,6 +35,7 @@ class Grad(nn.Cell):
|
|||
def construct(self, input, output_grad):
|
||||
return self.grad(self.network)(input, output_grad)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -41,9 +44,10 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.relu(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(2,3,3,4).astype(np.float32)
|
||||
sens = np.random.randn(2,3,3,4).astype(np.float32)
|
||||
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
net = Grad(Net())
|
||||
output = net(Tensor(x), Tensor(sens))
|
||||
print(len(output))
|
||||
|
|
|
@ -21,8 +21,10 @@ import mindspore.context as context
|
|||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -33,6 +35,7 @@ class Grad(nn.Cell):
|
|||
def construct(self, input):
|
||||
return self.grad(self.network)(input)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -41,8 +44,9 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.relu_v2(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = Tensor(np.ones((2,3,3,4)).astype(np.float32))
|
||||
x = Tensor(np.ones((2, 3, 3, 4)).astype(np.float32))
|
||||
relu_net = Net()
|
||||
relu_output = relu_net(x)
|
||||
net = Grad(Net())
|
||||
|
|
|
@ -18,8 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -29,6 +31,7 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.upsample(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.random(size=(32, 3, 32, 32)).astype(np.float32)
|
||||
upsample = Net()
|
||||
|
|
|
@ -19,6 +19,7 @@ from mindspore.ops.composite import GradOperation
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
|
@ -49,4 +50,4 @@ def test_net():
|
|||
grad = Grad(Net())
|
||||
output = grad(Tensor(image), Tensor(grads))
|
||||
print("=================output====================")
|
||||
print(output)
|
||||
print(output)
|
||||
|
|
|
@ -20,6 +20,7 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
|
@ -29,12 +30,13 @@ class Net(nn.Cell):
|
|||
self.scatternd = P.ScatterNd()
|
||||
|
||||
def construct(self, indices, update):
|
||||
return self.scatternd(indices, update, (3,3))
|
||||
return self.scatternd(indices, update, (3, 3))
|
||||
|
||||
|
||||
indices = np.array([[0, 1], [1, 1]]).astype(np.int32)
|
||||
update = np.array([3.2, 1.1]).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
scatternd = Net()
|
||||
print(indices)
|
||||
|
|
|
@ -23,7 +23,10 @@ from mindspore.common.initializer import initializer
|
|||
from mindspore.common.parameter import Parameter
|
||||
import mindspore as ms
|
||||
from mindspore.train.model import Model
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Select(Cell):
|
||||
def __init__(self, dtype):
|
||||
super(Select, self).__init__()
|
||||
|
@ -32,6 +35,7 @@ class Select(Cell):
|
|||
def construct(self, cond, inputa, inputb):
|
||||
return self.select(cond, inputa, inputb)
|
||||
|
||||
|
||||
def me_select(cond, inputa, inputb, dtype=ms.float32):
|
||||
net = Select(dtype)
|
||||
net.set_train()
|
||||
|
@ -45,9 +49,10 @@ def me_select(cond, inputa, inputb, dtype=ms.float32):
|
|||
|
||||
out = model.predict(Tensor(cond), inputa, inputb)
|
||||
return out.asnumpy()
|
||||
|
||||
def cmp_select(input_cond,inputa,inputb):
|
||||
cond = input_cond > 0.5
|
||||
|
||||
|
||||
def cmp_select(input_cond, inputa, inputb):
|
||||
cond = input_cond > 0.5
|
||||
out_me = me_select(cond, inputa, inputb)
|
||||
print(input_cond)
|
||||
print(cond)
|
||||
|
@ -55,9 +60,9 @@ def cmp_select(input_cond,inputa,inputb):
|
|||
print(inputb)
|
||||
print(out_me)
|
||||
|
||||
|
||||
def test_select_2_2():
|
||||
input_cond = np.random.rand(2, 2)
|
||||
inputa = np.random.randn(2,2).astype(np.float32)
|
||||
inputb = np.random.randn(2,2).astype(np.float32)
|
||||
cmp_select(input_cond,inputa,inputb)
|
||||
|
||||
inputa = np.random.randn(2, 2).astype(np.float32)
|
||||
inputb = np.random.randn(2, 2).astype(np.float32)
|
||||
cmp_select(input_cond, inputa, inputb)
|
||||
|
|
|
@ -18,8 +18,10 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -29,6 +31,7 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.sigmoid(x)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.random(size=(2, 3)).astype(np.float32)
|
||||
sigmoid = Net()
|
||||
|
|
|
@ -21,6 +21,7 @@ import mindspore.context as context
|
|||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
|
|
@ -22,6 +22,7 @@ import mindspore.context as context
|
|||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
|
|
@ -19,6 +19,7 @@ from mindspore.ops.composite import GradOperation
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
|
@ -42,6 +43,7 @@ class Grad(nn.Cell):
|
|||
def construct(self, x, y):
|
||||
return self.grad(self.network)(x, y)
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.random(size=(2, 3, 4, 5, 6)).astype(np.float32)
|
||||
y = np.random.random(size=(2, 3, 4, 5, 6)).astype(np.float32)
|
||||
|
@ -49,4 +51,3 @@ def test_net():
|
|||
output = net(Tensor(x), Tensor(y))
|
||||
print("=================output====================")
|
||||
print(output.asnumpy())
|
||||
|
||||
|
|
|
@ -20,26 +20,28 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Slice(nn.Cell):
|
||||
def __init__( self):
|
||||
def __init__(self):
|
||||
super(Slice, self).__init__()
|
||||
|
||||
self.cat = P.Slice()
|
||||
self.x1 = Parameter(initializer(
|
||||
Tensor(np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32)), [3,2,3]), name='x1')
|
||||
Tensor(np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(
|
||||
np.float32)), [3, 2, 3]), name='x1')
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
return self.cat(self.x1, (0,1, 0), (2, 1, 3))
|
||||
return self.cat(self.x1, (0, 1, 0), (2, 1, 3))
|
||||
|
||||
|
||||
def test_slice():
|
||||
cat = Slice()
|
||||
output = cat()
|
||||
expect = [[[2., -2., 2.]],
|
||||
[[4., -4., 4.]]]
|
||||
expect = [[[2., -2., 2.]],
|
||||
[[4., -4., 4.]]]
|
||||
print(output)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
|
|
@ -18,6 +18,7 @@ import mindspore.nn as nn
|
|||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
|
|
|
@ -31,6 +31,7 @@ class Net(nn.Cell):
|
|||
def construct(self, pred, gt):
|
||||
return self.SmoothL1Loss(pred, gt)
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
|
|
@ -20,17 +20,22 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.Softmax = P.Softmax()
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
return self.Softmax(x)
|
||||
|
||||
|
||||
x = np.array([[5, 1]]).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
softmax = Net()
|
||||
output = softmax(Tensor(x))
|
||||
|
|
|
@ -18,6 +18,7 @@ import mindspore.nn as nn
|
|||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
|
@ -36,4 +37,4 @@ def test_net():
|
|||
labels = np.random.randn(32, 1001).astype(np.float16)
|
||||
SoftmaxCrossEntropyWithLogits = Net()
|
||||
output = SoftmaxCrossEntropyWithLogits(Tensor(features), Tensor(labels))
|
||||
#print(output.asnumpy())
|
||||
# print(output.asnumpy())
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -29,7 +32,8 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.split(x)
|
||||
|
||||
x = np.random.randn(2,4).astype(np.float32)
|
||||
|
||||
x = np.random.randn(2, 4).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
|
|
|
@ -20,17 +20,22 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.sqrt = P.Sqrt()
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
return self.sqrt(x)
|
||||
|
||||
|
||||
x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
sqrt = Net()
|
||||
output = sqrt(Tensor(x))
|
||||
|
|
|
@ -20,17 +20,22 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.square = P.Square()
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
return self.square(x)
|
||||
|
||||
|
||||
x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
square = Net()
|
||||
output = square(Tensor(x))
|
||||
|
|
|
@ -19,7 +19,10 @@ from mindspore.nn import Cell
|
|||
from mindspore.train.model import Model
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, begin, end, stride):
|
||||
super(Net, self).__init__()
|
||||
|
@ -32,6 +35,7 @@ class Net(Cell):
|
|||
x = self.stridedslice(input, self.begin, self.end, self.stride)
|
||||
return x
|
||||
|
||||
|
||||
def me_stridedslice(input1, begin, end, stride):
|
||||
input_me = Tensor(input1)
|
||||
net = Net(begin, end, stride)
|
||||
|
@ -40,17 +44,19 @@ def me_stridedslice(input1, begin, end, stride):
|
|||
output = model.predict(input_me)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
||||
def test_stridedslice_input_2d():
|
||||
input = np.random.randn(5, 5).astype(np.int32)
|
||||
begin = (0,0)
|
||||
end = (2,2)
|
||||
stride = (1,1)
|
||||
begin = (0, 0)
|
||||
end = (2, 2)
|
||||
stride = (1, 1)
|
||||
|
||||
me_stridedslice(input, begin, end, stride)
|
||||
|
||||
|
||||
def test_stridedslice_input_3d():
|
||||
input = np.random.randn(5, 5, 5).astype(np.float32)
|
||||
begin = (0,0,0)
|
||||
end = (3,3,3)
|
||||
stride = (1,1,1)
|
||||
begin = (0, 0, 0)
|
||||
end = (3, 3, 3)
|
||||
stride = (1, 1, 1)
|
||||
me_stridedslice(input, begin, end, stride)
|
||||
|
|
|
@ -19,8 +19,10 @@ from mindspore.nn import Cell
|
|||
from mindspore.ops.composite import GradOperation
|
||||
from mindspore import context
|
||||
import pytest
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Grad(Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
|
@ -31,6 +33,7 @@ class Grad(Cell):
|
|||
gout = self.grad(self.network)(input, output_grad)
|
||||
return gout
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, begin, end, stride):
|
||||
super(Net, self).__init__()
|
||||
|
@ -43,6 +46,7 @@ class Net(Cell):
|
|||
x = self.stridedslice(input, self.begin, self.end, self.stride)
|
||||
return x
|
||||
|
||||
|
||||
def me_stridedslice(input, begin, end, stride, gradients):
|
||||
input_me = Tensor(input)
|
||||
out_grad_me = Tensor(gradients)
|
||||
|
@ -51,6 +55,7 @@ def me_stridedslice(input, begin, end, stride, gradients):
|
|||
out_grad = net_me(input_me, out_grad_me)
|
||||
print(out_grad.asnumpy())
|
||||
|
||||
|
||||
def test_grad_stridedslice_1d():
|
||||
input = np.random.randn(2).astype(np.float32)
|
||||
begin = (0,)
|
||||
|
|
|
@ -20,17 +20,21 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.sub = P.Sub()
|
||||
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.sub(x, y)
|
||||
|
||||
x = np.random.randn(1,3,3,4).astype(np.float32)
|
||||
y = np.random.randn(1,3,3,4).astype(np.float32)
|
||||
|
||||
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
|
||||
|
||||
|
||||
def test_net():
|
||||
|
|
|
@ -21,6 +21,7 @@ from mindspore.ops import operations as P
|
|||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -29,9 +30,12 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.tanh(x)
|
||||
|
||||
|
||||
input_shape = [1]
|
||||
input_np = np.random.randn(*input_shape).astype(np.float32)
|
||||
input_me = Tensor(input_np)
|
||||
|
||||
|
||||
def test_net():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
tanh = Net()
|
||||
|
@ -40,4 +44,4 @@ def test_net():
|
|||
out = m.predict(input_me)
|
||||
print("out_me.dtype={}".format(out.dtype))
|
||||
print("out_me.asnumpy={}".format(out.asnumpy()))
|
||||
return out.asnumpy()
|
||||
return out.asnumpy()
|
||||
|
|
|
@ -22,6 +22,7 @@ from mindspore.ops.operations import _grad_ops as G
|
|||
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
|
@ -30,9 +31,12 @@ class Net(nn.Cell):
|
|||
def construct(self, y, dy):
|
||||
return self.tanh_grad(y, dy)
|
||||
|
||||
|
||||
input_shape = [1]
|
||||
input_np = np.random.randn(*input_shape).astype(np.float32)
|
||||
input_me = Tensor(input_np)
|
||||
|
||||
|
||||
def test_net():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
tanh_grad = Net()
|
||||
|
@ -41,4 +45,4 @@ def test_net():
|
|||
out = m.predict(input_me, input_me)
|
||||
print("out_me.dtype={}".format(out.dtype))
|
||||
print("out_me.asnumpy={}".format(out.asnumpy()))
|
||||
return out.asnumpy()
|
||||
return out.asnumpy()
|
||||
|
|
|
@ -20,6 +20,7 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
|
|
|
@ -20,7 +20,10 @@ import numpy as np
|
|||
import mindspore.context as context
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, k):
|
||||
super(Net, self).__init__()
|
||||
|
@ -32,7 +35,7 @@ class Net(nn.Cell):
|
|||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(4,4).astype(np.float16)
|
||||
x = np.random.randn(4, 4).astype(np.float16)
|
||||
k = 2
|
||||
TopK = Net(k)
|
||||
output = TopK(Tensor(x))
|
||||
|
@ -41,4 +44,3 @@ def test_net():
|
|||
|
||||
print("***********output y*********")
|
||||
print(output[0].asnumpy())
|
||||
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue