forked from mindspore-Ecosystem/mindspore
modify readme
This commit is contained in:
parent
0f28998969
commit
d33ea18796
|
@ -42,6 +42,7 @@ Dataset used: [VOC2012](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.htm
|
|||
## [Mixed Precision(Ascend)](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
@ -119,9 +120,9 @@ Major parameters in train.py and config.py are:
|
|||
|
||||
|
||||
You can start training using python or shell scripts. The usage of shell scripts as follows:
|
||||
|
||||
sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH (CKPT_PATH)
|
||||
|
||||
```
|
||||
sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH (CKPT_PATH)
|
||||
```
|
||||
> Notes:
|
||||
RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training_ascend.html) , and the device_ip can be got as https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools.
|
||||
|
||||
|
@ -140,7 +141,7 @@ sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH (CKPT_PATH)
|
|||
|
||||
### Result
|
||||
|
||||
Training result will be stored in the example path. Checkpoints will be stored at `. /LOG0/chec_deeplabv3-*` by default, and training log will be redirected to `./log.txt` like followings.
|
||||
Training result(8p) will be stored in the example path. Checkpoints will be stored at `. /train_parallel0/` by default, and training log will be redirected to `./train_parallel0/log.txt` like followings.
|
||||
|
||||
```
|
||||
epoch: 1 step: 732, loss is 0.11594
|
||||
|
@ -154,8 +155,9 @@ Epoch time: 160917.911, per step time: 36.631
|
|||
|
||||
You can start training using python or shell scripts. The usage of shell scripts as follows:
|
||||
|
||||
sh scripts/run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH
|
||||
|
||||
```
|
||||
sh scripts/run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH
|
||||
```
|
||||
### Launch
|
||||
|
||||
```
|
||||
|
@ -184,14 +186,15 @@ mIoU = 0.65049
|
|||
|
||||
| Parameters | DeeplabV3 |
|
||||
| -------------------------- | ---------------------------------------------------------- |
|
||||
| Model Version | |
|
||||
| Model Version | V1 |
|
||||
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G |
|
||||
| uploaded Date | 08/24/2020 |
|
||||
| Uploaded Date | 08/24/2020(month/day/year) |
|
||||
| MindSpore Version | 0.6.0-beta |
|
||||
| Training Parameters | src/config.py |
|
||||
| Dataset | voc2012/train |
|
||||
| Batch_size | 2 |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | SoftmaxCrossEntropy |
|
||||
| outputs | probability |
|
||||
| Outputs | probability |
|
||||
| Loss | 0.98 |
|
||||
| Accuracy | mIoU:65% |
|
||||
| Total time | 5mins |
|
||||
|
@ -202,14 +205,14 @@ mIoU = 0.65049
|
|||
#### Inference Performance
|
||||
|
||||
| Parameters | DeeplabV3 |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | |
|
||||
| Resource | Ascend 910 |
|
||||
| -------------------------- | ---------------------------------------------------------- |
|
||||
| Model Version | V1 |
|
||||
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G |
|
||||
| Uploaded Date | 08/24/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.6.0-beta |
|
||||
| Dataset | voc2012/val |
|
||||
| batch_size | 2 |
|
||||
| outputs | probability |
|
||||
| Batch_size | 2 |
|
||||
| Outputs | probability |
|
||||
| Accuracy | mIoU:65% |
|
||||
| Total time | 10mins |
|
||||
| Model for inference | 97M (.GEIR file) |
|
||||
|
|
|
@ -46,6 +46,7 @@ Dataset used can refer to paper.
|
|||
## [Mixed Precision(Ascend)](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
@ -131,7 +132,7 @@ sh run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
|
|||
sh run_standalone_train.sh DEVICE_ID DATA_PATH
|
||||
```
|
||||
> Notes:
|
||||
RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training_ascend.html) , and the device_ip can be got as https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools.
|
||||
RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training_ascend.html) , and the device_ip can be got as [Link]https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools.
|
||||
|
||||
- GPU:
|
||||
```
|
||||
|
@ -178,8 +179,14 @@ Epoch time: 160917.911, per step time: 128.631
|
|||
|
||||
You can start training using python or shell scripts. The usage of shell scripts as follows:
|
||||
|
||||
- Ascend: sh run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
|
||||
- GPU: sh run_eval_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
|
||||
- Ascend:
|
||||
```
|
||||
sh run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
|
||||
```
|
||||
- GPU:
|
||||
```
|
||||
sh run_eval_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
|
||||
```
|
||||
|
||||
### Launch
|
||||
|
||||
|
@ -212,7 +219,7 @@ metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
|
|||
|
||||
| Parameters | InceptionV3 | |
|
||||
| -------------------------- | ---------------------------------------------- | ------------------------- |
|
||||
| Model Version | | |
|
||||
| Model Version | V1 | V1 |
|
||||
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMI V100-16G(PCIE),cpu:2.10GHz 96cores, memory:250G |
|
||||
| uploaded Date | 08/21/2020 | 08/21/2020 |
|
||||
| MindSpore Version | 0.6.0-beta | 0.6.0-beta |
|
||||
|
@ -232,7 +239,7 @@ metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
|
|||
|
||||
| Parameters | InceptionV3 |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | |
|
||||
| Model Version | V1 |
|
||||
| Resource | Ascend 910 |
|
||||
| Uploaded Date | 08/22/2020 (month/day/year) |
|
||||
| MindSpore Version | 0.6.0-beta |
|
||||
|
|
Loading…
Reference in New Issue