[feat][assistant][I3J6V3] add new data operator FakeImage

This commit is contained in:
G-Dragon-Liu 2021-08-19 11:40:55 +00:00
parent 94a7298690
commit d2f22a8726
16 changed files with 1309 additions and 1 deletions

View File

@ -97,6 +97,7 @@
#include "minddata/dataset/engine/ir/datasetops/source/csv_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/div2k_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/emnist_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/fake_image_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/flickr_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/random_node.h"
@ -1070,6 +1071,30 @@ EMnistDataset::EMnistDataset(const std::vector<char> &dataset_dir, const std::ve
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
}
FakeImageDataset::FakeImageDataset(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes,
int32_t base_seed, const std::shared_ptr<Sampler> &sampler,
const std::shared_ptr<DatasetCache> &cache) {
auto sampler_obj = sampler ? sampler->Parse() : nullptr;
auto ds = std::make_shared<FakeImageNode>(num_images, image_size, num_classes, base_seed, sampler_obj, cache);
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
}
FakeImageDataset::FakeImageDataset(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes,
int32_t base_seed, const Sampler *sampler,
const std::shared_ptr<DatasetCache> &cache) {
auto sampler_obj = sampler ? sampler->Parse() : nullptr;
auto ds = std::make_shared<FakeImageNode>(num_images, image_size, num_classes, base_seed, sampler_obj, cache);
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
}
FakeImageDataset::FakeImageDataset(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes,
int32_t base_seed, const std::reference_wrapper<Sampler> sampler,
const std::shared_ptr<DatasetCache> &cache) {
auto sampler_obj = sampler.get().Parse();
auto ds = std::make_shared<FakeImageNode>(num_images, image_size, num_classes, base_seed, sampler_obj, cache);
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
}
FlickrDataset::FlickrDataset(const std::vector<char> &dataset_dir, const std::vector<char> &annotation_file,
bool decode, const std::shared_ptr<Sampler> &sampler,
const std::shared_ptr<DatasetCache> &cache) {

View File

@ -34,6 +34,7 @@
#include "minddata/dataset/engine/ir/datasetops/source/csv_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/div2k_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/emnist_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/fake_image_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/flickr_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/generator_node.h"
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
@ -164,6 +165,18 @@ PYBIND_REGISTER(EMnistNode, 2, ([](const py::module *m) {
}));
}));
PYBIND_REGISTER(FakeImageNode, 2, ([](const py::module *m) {
(void)py::class_<FakeImageNode, DatasetNode, std::shared_ptr<FakeImageNode>>(
*m, "FakeImageNode", "to create a FakeImageNode")
.def(py::init([](int32_t num_images, const std::vector<int32_t> image_size, int32_t num_classes,
int32_t base_seed, py::handle sampler) {
auto fake_image = std::make_shared<FakeImageNode>(num_images, image_size, num_classes, base_seed,
toSamplerObj(sampler), nullptr);
THROW_IF_ERROR(fake_image->ValidateParams());
return fake_image;
}));
}));
PYBIND_REGISTER(
FlickrNode, 2, ([](const py::module *m) {
(void)py::class_<FlickrNode, DatasetNode, std::shared_ptr<FlickrNode>>(*m, "FlickrNode", "to create a FlickrNode")

View File

@ -23,6 +23,7 @@ set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
flickr_op.cc
qmnist_op.cc
emnist_op.cc
fake_image_op.cc
)
set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES

View File

@ -0,0 +1,146 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/engine/datasetops/source/fake_image_op.h"
#include <fstream>
#include <iomanip>
#include <set>
#include "minddata/dataset/core/config_manager.h"
#include "minddata/dataset/core/tensor_shape.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
#include "minddata/dataset/engine/execution_tree.h"
#include "utils/ms_utils.h"
namespace mindspore {
namespace dataset {
FakeImageOp::FakeImageOp(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes,
int32_t base_seed, int32_t num_workers, int32_t op_connector_size,
std::unique_ptr<DataSchema> data_schema, std::shared_ptr<SamplerRT> sampler)
: MappableLeafOp(num_workers, op_connector_size, std::move(sampler)),
num_images_(num_images),
image_size_(image_size),
num_classes_(num_classes),
base_seed_(base_seed),
image_tensor_({}),
data_schema_(std::move(data_schema)) {}
// Load 1 TensorRow (image, label) using 1 trow.
Status FakeImageOp::LoadTensorRow(row_id_type row_id, TensorRow *trow) {
RETURN_UNEXPECTED_IF_NULL(trow);
std::shared_ptr<Tensor> image, label;
auto images_buf = std::make_unique<double[]>(image_total_size_);
auto pixels = &images_buf[0];
{
std::unique_lock<std::mutex> lock(access_mutex_);
if (image_tensor_[row_id] == nullptr) {
rand_gen_.seed(base_seed_ + row_id); // set seed for random generator.
std::normal_distribution<double> distribution(0.0, 1.0);
for (int i = 0; i < image_total_size_; ++i) {
pixels[i] = distribution(rand_gen_); // generate the Gaussian distribution pixel.
if (pixels[i] < 0) {
pixels[i] = 0;
}
if (pixels[i] > 255) {
pixels[i] = 255;
}
}
TensorShape img_tensor_shape = TensorShape({image_size_[0], image_size_[1], image_size_[2]});
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(img_tensor_shape, data_schema_->Column(0).Type(),
reinterpret_cast<unsigned char *>(pixels), &image));
RETURN_IF_NOT_OK(Tensor::CreateFromTensor(image, &image_tensor_[row_id]));
} else {
RETURN_IF_NOT_OK(Tensor::CreateFromTensor(image_tensor_[row_id], &image));
}
}
RETURN_IF_NOT_OK(Tensor::CreateScalar(label_list_[row_id], &label));
(*trow) = TensorRow(row_id, {std::move(image), std::move(label)});
return Status::OK();
}
// A print method typically used for debugging.
void FakeImageOp::Print(std::ostream &out, bool show_all) const {
if (!show_all) {
// Call the super class for displaying any common 1-liner info.
ParallelOp::Print(out, show_all);
} else {
// Call the super class for displaying any common detailed info.
ParallelOp::Print(out, show_all);
// Then show any custom derived-internal stuff.
out << "\nNumber of images: " << num_images_ << "\nNumber of classes: " << num_classes_
<< "\nBase seed: " << base_seed_ << "\n\n";
}
}
// Derived from RandomAccessOp.
Status FakeImageOp::GetClassIds(std::map<int32_t, std::vector<int64_t>> *cls_ids) const {
if (cls_ids == nullptr || !cls_ids->empty() || label_list_.empty()) {
if (label_list_.empty()) {
RETURN_STATUS_UNEXPECTED("No image found in dataset. Check if image was generated successfully.");
} else {
RETURN_STATUS_UNEXPECTED(
"[Internal ERROR] Map for storing image-index pair is nullptr or has been set in other place, "
"it must be empty before using GetClassIds.");
}
}
for (size_t i = 0; i < label_list_.size(); ++i) {
(*cls_ids)[label_list_[i]].push_back(i);
}
for (auto &pr : (*cls_ids)) {
pr.second.shrink_to_fit();
}
return Status::OK();
}
Status FakeImageOp::GetItem(int32_t index) {
// generate one target label according to index and save it in label_list_.
rand_gen_.seed(base_seed_ + index); // set seed for random generator.
std::uniform_int_distribution<int32_t> dist(0, num_classes_ - 1);
uint32_t target = dist(rand_gen_); // generate the target.
label_list_.emplace_back(target);
return Status::OK();
}
Status FakeImageOp::PrepareData() {
// FakeImage generate image with Gaussian distribution.
image_total_size_ = image_size_[0] * image_size_[1] * image_size_[2];
for (size_t i = 0; i < num_images_; ++i) {
RETURN_IF_NOT_OK(GetItem(i));
}
label_list_.shrink_to_fit();
num_rows_ = label_list_.size();
CHECK_FAIL_RETURN_UNEXPECTED(num_rows_ > 0, "Generate image failed, please check dataset API.");
image_tensor_.clear();
image_tensor_.resize(num_rows_);
return Status::OK();
}
Status FakeImageOp::ComputeColMap() {
// Extract the column name mapping from the schema and save it in the class.
if (column_name_id_map_.empty()) {
RETURN_IF_NOT_OK(data_schema_->GetColumnNameMap(&(column_name_id_map_)));
} else {
MS_LOG(WARNING) << "Column name map is already set!";
}
return Status::OK();
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,112 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_FAKE_IMAGE_OP_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_FAKE_IMAGE_OP_H_
#include <algorithm>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/engine/data_schema.h"
#include "minddata/dataset/engine/datasetops/parallel_op.h"
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
#include "minddata/dataset/util/path.h"
#include "minddata/dataset/util/queue.h"
#include "minddata/dataset/util/status.h"
#include "minddata/dataset/util/wait_post.h"
namespace mindspore {
namespace dataset {
class FakeImageOp : public MappableLeafOp {
public:
// Constructor.
// @param int32_t num_images - Number of generated fake images.
// @param const std::vector<int32_t> &image_size - The size of fake image.
// @param int32_t num_classes - Number of classes in fake images.
// @param int32_t base_seed - A base seed which is used in generating fake image randomly.
// @param int32_t num_workers - Number of workers reading images in parallel.
// @param int32_t op_connector_size - Connector queue size.
// @param std::unique_ptr<DataSchema> data_schema - The schema of the fake image dataset.
// @param td::unique_ptr<Sampler> sampler - Sampler tells FakeImageOp what to read.
FakeImageOp(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes, int32_t base_seed,
int32_t num_workers, int32_t op_connector_size, std::unique_ptr<DataSchema> data_schema,
std::shared_ptr<SamplerRT> sampler);
// Destructor.
~FakeImageOp() = default;
// Method derived from RandomAccess Op, enable Sampler to get all ids for each class.
// @param std::map<int32_t, std::vector<int64_t>> *cls_ids - Key label, val all ids for this class.
// @return Status The status code returned.
Status GetClassIds(std::map<int32_t, std::vector<int64_t>> *cls_ids) const override;
// A print method typically used for debugging.
// @param out - The output stream to write output to.
// @param show_all - A bool to control if you want to show all info or just a summary.
void Print(std::ostream &out, bool show_all) const override;
// Function to count the number of samples in the FakeImage dataset.
// @return Number of images.
int64_t GetTotalRows() const { return num_images_; }
// Op name getter.
// @return Name of the current Op.
std::string Name() const override { return "FakeImageOp"; }
// Get a image from index
// @param int32_t index - Generate one image according to index.
Status GetItem(int32_t index);
private:
// Load a tensor row according to a lable_list.
// @param row_id_type row_id - Id for this tensor row.
// @param TensorRow *row - Image & label read into this tensor row.
// @return Status The status code returned.
Status LoadTensorRow(row_id_type row_id, TensorRow *row) override;
// Generate all labels of FakeImage dataset
// @return Status The status code returned.
Status PrepareData();
// Private function for computing the assignment of the column name map.
// @return Status The status code returned.
Status ComputeColMap() override;
int32_t num_images_;
int32_t base_seed_;
std::vector<int> image_size_;
int32_t num_classes_;
int64_t rows_per_buffer_;
std::unique_ptr<DataSchema> data_schema_;
int32_t image_total_size_;
std::vector<uint32_t> label_list_;
std::vector<std::shared_ptr<Tensor>> image_tensor_;
std::mt19937 rand_gen_;
std::mutex access_mutex_;
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_FAKE_IMAGE_OP_H_

View File

@ -84,6 +84,7 @@ constexpr char kCocoNode[] = "CocoDataset";
constexpr char kCSVNode[] = "CSVDataset";
constexpr char kDIV2KNode[] = "DIV2KDataset";
constexpr char kEMnistNode[] = "EMnistDataset";
constexpr char kFakeImageNode[] = "FakeImageDataset";
constexpr char kFlickrNode[] = "FlickrDataset";
constexpr char kGeneratorNode[] = "GeneratorDataset";
constexpr char kImageFolderNode[] = "ImageFolderDataset";

View File

@ -13,6 +13,7 @@ set(DATASET_ENGINE_IR_DATASETOPS_SOURCE_SRC_FILES
csv_node.cc
div2k_node.cc
emnist_node.cc
fake_image_node.cc
flickr_node.cc
image_folder_node.cc
manifest_node.cc

View File

@ -0,0 +1,149 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/engine/ir/datasetops/source/fake_image_node.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "minddata/dataset/engine/datasetops/source/fake_image_op.h"
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
FakeImageNode::FakeImageNode(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes,
int32_t base_seed, std::shared_ptr<SamplerObj> sampler,
std::shared_ptr<DatasetCache> cache)
: MappableSourceNode(std::move(cache)),
num_images_(num_images),
image_size_(image_size),
num_classes_(num_classes),
base_seed_(base_seed),
sampler_(sampler) {}
std::shared_ptr<DatasetNode> FakeImageNode::Copy() {
std::shared_ptr<SamplerObj> sampler = (sampler_ == nullptr) ? nullptr : sampler_->SamplerCopy();
auto node = std::make_shared<FakeImageNode>(num_images_, image_size_, num_classes_, base_seed_, sampler, cache_);
return node;
}
void FakeImageNode::Print(std::ostream &out) const {
out << (Name() + "(cache: " + ((cache_ != nullptr) ? "true" : "false") + ")");
}
Status FakeImageNode::ValidateParams() {
RETURN_IF_NOT_OK(DatasetNode::ValidateParams());
RETURN_IF_NOT_OK(ValidateDatasetSampler("FakeImageNode", sampler_));
if (num_images_ <= 0) {
std::string err_msg = "FakeImageNode: num_images must be greater than 0, but got: " + std::to_string(num_images_);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
if (image_size_.size() != 3) {
std::string err_msg =
"FakeImageNode: image_size expecting size 3, but got image_size.size(): " + std::to_string(image_size_.size());
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
for (auto i = 0; i < 3; i++) {
if (image_size_[i] <= 0) {
std::string err_msg = "FakeImageNode: image_size[" + std::to_string(i) +
"] must be greater than 0, but got: " + std::to_string(image_size_[i]);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
}
if (num_classes_ <= 0) {
std::string err_msg = "FakeImageNode: num_classes must be greater than 0, but got: " + std::to_string(num_classes_);
MS_LOG(ERROR) << err_msg;
RETURN_STATUS_SYNTAX_ERROR(err_msg);
}
return Status::OK();
}
Status FakeImageNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) {
// Do internal Schema generation.
auto schema = std::make_unique<DataSchema>();
RETURN_IF_NOT_OK(schema->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kCv, 1)));
TensorShape scalar = TensorShape::CreateScalar();
RETURN_IF_NOT_OK(
schema->AddColumn(ColDescriptor("label", DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 0, &scalar)));
std::shared_ptr<SamplerRT> sampler_rt = nullptr;
RETURN_IF_NOT_OK(sampler_->SamplerBuild(&sampler_rt));
auto op = std::make_shared<FakeImageOp>(num_images_, image_size_, num_classes_, base_seed_, num_workers_,
connector_que_size_, std::move(schema), std::move(sampler_rt));
op->SetTotalRepeats(GetTotalRepeats());
op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
node_ops->push_back(op);
return Status::OK();
}
// Get the shard id of node
Status FakeImageNode::GetShardId(int32_t *shard_id) {
*shard_id = sampler_->ShardId();
return Status::OK();
}
// Get Dataset size
Status FakeImageNode::GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
int64_t *dataset_size) {
if (dataset_size_ > 0) {
*dataset_size = dataset_size_;
return Status::OK();
}
int64_t num_rows, sample_size;
num_rows = num_images_;
std::shared_ptr<SamplerRT> sampler_rt = nullptr;
RETURN_IF_NOT_OK(sampler_->SamplerBuild(&sampler_rt));
sample_size = sampler_rt->CalculateNumSamples(num_rows);
if (sample_size == -1) {
RETURN_IF_NOT_OK(size_getter->DryRun(shared_from_this(), &sample_size));
}
*dataset_size = sample_size;
dataset_size_ = *dataset_size;
return Status::OK();
}
Status FakeImageNode::to_json(nlohmann::json *out_json) {
nlohmann::json args, sampler_args;
RETURN_IF_NOT_OK(sampler_->to_json(&sampler_args));
args["sampler"] = sampler_args;
args["num_parallel_workers"] = num_workers_;
args["num_images"] = num_images_;
args["image_size"] = image_size_;
args["num_classes"] = num_classes_;
args["base_seed"] = base_seed_;
if (cache_ != nullptr) {
nlohmann::json cache_args;
RETURN_IF_NOT_OK(cache_->to_json(&cache_args));
args["cache"] = cache_args;
}
*out_json = args;
return Status::OK();
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,101 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_FAKE_IMAGE_NODE_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_FAKE_IMAGE_NODE_H_
#include <memory>
#include <string>
#include <vector>
#include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
namespace mindspore {
namespace dataset {
class FakeImageNode : public MappableSourceNode {
public:
/// \brief Constructor.
FakeImageNode(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes, int32_t base_seed,
std::shared_ptr<SamplerObj> sampler, std::shared_ptr<DatasetCache> cache);
/// \brief Destructor.
~FakeImageNode() = default;
/// \brief Node name getter.
/// \return Name of the current node.
std::string Name() const override { return "FakeImageNode"; }
/// \brief Print the description.
/// \param[in] out - The output stream to write output to.
void Print(std::ostream &out) const override;
/// \brief Copy the node to a new object.
/// \return A shared pointer to the new copy.
std::shared_ptr<DatasetNode> Copy() override;
/// \brief A base class override function to create the required runtime dataset op objects for this class.
/// \param[in] node_ops - A vector containing shared pointer to the Dataset Ops that this object will create.
/// \return Status Status::OK() if build successfully.
Status Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) override;
/// \brief Parameters validation.
/// \return Status Status::OK() if all the parameters are valid.
Status ValidateParams() override;
/// \brief Get the shard id of node.
/// \param[in] shard_id - The shard id.
/// \return Status Status::OK() if get shard id successfully.
Status GetShardId(int32_t *shard_id) override;
/// \brief Base-class override for GetDatasetSize.
/// \param[in] size_getter - Shared pointer to DatasetSizeGetter.
/// \param[in] estimate - This is only supported by some of the ops and it's used to speed up the process of getting
/// dataset size at the expense of accuracy.
/// \param[out] dataset_size - The size of the dataset.
/// \return Status of the function.
Status GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
int64_t *dataset_size) override;
/// \brief Getter functions.
const std::vector<int32_t> &ImageSize() const { return image_size_; }
int32_t NumImages() const { return num_images_; }
int32_t NumClasses() const { return num_classes_; }
int32_t BaseSeed() const { return base_seed_; }
/// \brief Get the arguments of node.
/// \param[out] - out_json JSON string of all attributes.
/// \return Status of the function.
Status to_json(nlohmann::json *out_json) override;
/// \brief Sampler getter.
/// \return SamplerObj of the current node.
std::shared_ptr<SamplerObj> Sampler() override { return sampler_; }
/// \brief Sampler setter.
void SetSampler(std::shared_ptr<SamplerObj> sampler) override { sampler_ = sampler; }
private:
int32_t num_images_;
std::vector<int32_t> image_size_;
int32_t num_classes_;
int32_t base_seed_;
std::shared_ptr<SamplerObj> sampler_;
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_FAKE_IMAGE_NODE_H_

View File

@ -1715,6 +1715,96 @@ inline std::shared_ptr<EMnistDataset> EMnist(const std::string &dataset_dir, con
cache);
}
/// \class FakeImageDataset
/// \brief A source dataset for generating fake images.
class FakeImageDataset : public Dataset {
public:
/// \brief Constructor of FakeImageDataset.
/// \param[in] num_images The number of images to generate, which must be positive.
/// \param[in] image_size Size of the images, which must be a vector of three positive values.
/// \param[in] num_classes The number of classes of the images, which must be positive.
/// \param[in] base_seed The base seed to generate the images.
/// \param[in] sampler Shared pointer to a sampler object used to choose samples from the dataset. If sampler is not
/// given, a `RandomSampler` will be used to randomly iterate the entire dataset.
/// \param[in] cache Tensor cache to use.
explicit FakeImageDataset(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes,
int32_t base_seed, const std::shared_ptr<Sampler> &sampler,
const std::shared_ptr<DatasetCache> &cache);
/// \brief Constructor of FakeImageDataset.
/// \param[in] num_images The number of images to generate, which must be positive.
/// \param[in] image_size Size of the images, which must be a vector of three positive values.
/// \param[in] num_classes The number of classes of the images, which must be positive.
/// \param[in] base_seed The base seed to generate the images.
/// \param[in] sampler Raw pointer to a sampler object used to choose samples from the dataset.
/// \param[in] cache Tensor cache to use.
explicit FakeImageDataset(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes,
int32_t base_seed, const Sampler *sampler, const std::shared_ptr<DatasetCache> &cache);
/// \brief Constructor of FakeImageDataset.
/// \param[in] num_images The number of images to generate, which must be positive.
/// \param[in] image_size Size of the images, which must be a vector of three positive values.
/// \param[in] num_classes The number of classes of the images, which must be positive.
/// \param[in] base_seed The base seed to generate the images.
/// \param[in] sampler Sampler object used to choose samples from the dataset.
/// \param[in] cache Tensor cache to use.
explicit FakeImageDataset(int32_t num_images, const std::vector<int32_t> &image_size, int32_t num_classes,
int32_t base_seed, const std::reference_wrapper<Sampler> sampler,
const std::shared_ptr<DatasetCache> &cache);
/// Destructor of FakeImageDataset.
~FakeImageDataset() = default;
};
/// \brief Function to create a FakeImageDataset.
/// \notes The generated dataset has two columns ["image", "label"].
/// \param[in] num_images The number of images to generate, which must be positive (default = 1000).
/// \param[in] image_size Size of the images, which must be a vector of three positive values
/// (default = {224, 224, 3}).
/// \param[in] num_classes The number of classes of the images, which must be positive (default = 10).
/// \param[in] base_seed The base seed to generate the images (default = 0).
/// \param[in] sampler Shared pointer to a sampler object used to choose samples from the dataset. If sampler is not
/// given, a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler()).
/// \param[in] cache Tensor cache to use (default=nullptr which means no cache is used).
/// \return Shared pointer to the current FakeDataset.
inline std::shared_ptr<FakeImageDataset> FakeImage(
int32_t num_images = 1000, const std::vector<int32_t> &image_size = {224, 224, 3}, int32_t num_classes = 10,
int32_t base_seed = 0, const std::shared_ptr<Sampler> &sampler = std::make_shared<RandomSampler>(),
const std::shared_ptr<DatasetCache> &cache = nullptr) {
return std::make_shared<FakeImageDataset>(num_images, image_size, num_classes, base_seed, sampler, cache);
}
/// \brief Function to create a FakeImageDataset.
/// \notes The generated dataset has two columns ["image", "label"].
/// \param[in] num_images The number of images to generate, which must be positive.
/// \param[in] image_size Size of the images, which must be a vector of three positive values.
/// \param[in] num_classes The number of classes of the images, which must be positive.
/// \param[in] base_seed The base seed to generate the images.
/// \param[in] sampler Raw pointer to a sampler object used to choose samples from the dataset.
/// \param[in] cache Tensor cache to use (default=nullptr which means no cache is used).
/// \return Shared pointer to the current FakeImageDataset.
inline std::shared_ptr<FakeImageDataset> FakeImage(int32_t num_images, const std::vector<int32_t> &image_size,
int32_t num_classes, int32_t base_seed, const Sampler *sampler,
const std::shared_ptr<DatasetCache> &cache = nullptr) {
return std::make_shared<FakeImageDataset>(num_images, image_size, num_classes, base_seed, sampler, cache);
}
/// \brief Function to create a FakeImageDataset.
/// \notes The generated dataset has two columns ["image", "label"].
/// \param[in] num_images The number of images to generate, which must be positive.
/// \param[in] image_size Size of the images, which must be a vector of three positive values.
/// \param[in] num_classes The number of classes of the images, which must be positive.
/// \param[in] base_seed The base seed to generate the images.
/// \param[in] sampler Sampler object used to choose samples from the dataset.
/// \param[in] cache Tensor cache to use (default=nullptr which means no cache is used).
/// \return Shared pointer to the current FakeImageDataset.
inline std::shared_ptr<FakeImageDataset> FakeImage(int32_t num_images, const std::vector<int32_t> &image_size,
int32_t num_classes, int32_t base_seed,
const std::reference_wrapper<Sampler> sampler,
const std::shared_ptr<DatasetCache> &cache = nullptr) {
return std::make_shared<FakeImageDataset>(num_images, image_size, num_classes, base_seed, sampler, cache);
}
/// \class FlickrDataset
/// \brief A source dataset for reading and parsing Flickr dataset.
class FlickrDataset : public Dataset {

View File

@ -40,6 +40,7 @@ class Sampler : std::enable_shared_from_this<Sampler> {
friend class CSVDataset;
friend class DIV2KDataset;
friend class EMnistDataset;
friend class FakeImageDataset;
friend class FlickrDataset;
friend class ImageFolderDataset;
friend class ManifestDataset;

View File

@ -66,7 +66,7 @@ from .validators import check_batch, check_shuffle, check_map, check_filter, che
check_bucket_batch_by_length, check_cluedataset, check_save, check_csvdataset, check_paddeddataset, \
check_tuple_iterator, check_dict_iterator, check_schema, check_to_device_send, check_flickr_dataset, \
check_sb_dataset, check_flowers102dataset, check_cityscapes_dataset, check_usps_dataset, check_div2k_dataset, \
check_sbu_dataset, check_qmnist_dataset, check_emnist_dataset
check_sbu_dataset, check_qmnist_dataset, check_emnist_dataset, check_fake_image_dataset
from ..core.config import get_callback_timeout, _init_device_info, get_enable_shared_mem, get_num_parallel_workers, \
get_prefetch_size
from ..core.datatypes import mstype_to_detype, mstypelist_to_detypelist
@ -6482,6 +6482,95 @@ class EMnistDataset(MappableDataset):
return cde.EMnistNode(self.dataset_dir, self.name, self.usage, self.sampler)
class FakeImageDataset(MappableDataset):
"""
A source dataset for generating fake images.
The generated dataset has two columns :py:obj:`[image, label]`.
The tensor of column :py:obj:`image` is of the uint8 type.
The tensor of column :py:obj:`label` is a scalar of the uint32 type.
Args:
num_images (int, optional): Number of images to generate in the dataset (default=1000).
image_size (tuple, optional): Size of the fake image (default=(224, 224, 3)).
num_classes (int, optional): Number of classes in the dataset (default=10).
base_seed (int, optional): Offsets the index-based random seed used to generate each image (default=0).
num_samples (int, optional): The number of images to be included in the dataset
(default=None, will read all images).
num_parallel_workers (int, optional): Number of workers to read the data
(default=None, will use value set in the config).
shuffle (bool, optional): Whether or not to perform shuffle on the dataset
(default=None, expected order behavior shown in the table).
sampler (Sampler, optional): Object used to choose samples from the
dataset (default=None, expected order behavior shown in the table).
num_shards (int, optional): Number of shards that the dataset will be divided into (default=None).
When this argument is specified, `num_samples` reflects the max sample number of per shard.
shard_id (int, optional): The shard ID within `num_shards` (default=None). This
argument can only be specified when `num_shards` is also specified.
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
(default=None, which means no cache is used).
Raises:
RuntimeError: If num_parallel_workers exceeds the max thread numbers.
RuntimeError: If sampler and shuffle are specified at the same time.
RuntimeError: If sampler and sharding are specified at the same time.
RuntimeError: If num_shards is specified but shard_id is None.
RuntimeError: If shard_id is specified but num_shards is None.
ValueError: If shard_id is invalid (< 0 or >= num_shards).
Note:
- This dataset can take in a sampler. 'sampler' and 'shuffle' are mutually exclusive.
The table below shows what input arguments are allowed and their expected behavior.
.. list-table:: Expected Order Behavior of Using 'sampler' and 'shuffle'
:widths: 25 25 50
:header-rows: 1
* - Parameter 'sampler'
- Parameter 'shuffle'
- Expected Order Behavior
* - None
- None
- random order
* - None
- True
- random order
* - None
- False
- sequential order
* - Sampler object
- None
- order defined by sampler
* - Sampler object
- True
- not allowed
* - Sampler object
- False
- not allowed
Examples:
>>> # Read 3 samples from FakeImage dataset
>>> dataset = ds.FakeImageDataset(num_images=1000, image_size=(224,224,3),
... num_classes=10, base_seed=0, num_samples=3)
>>>
>>> # Note: In FakeImage dataset, each dictionary has keys "image" and "label"
"""
@check_fake_image_dataset
def __init__(self, num_images=1000, image_size=(224, 224, 3), num_classes=10, base_seed=0, num_samples=None,
num_parallel_workers=None, shuffle=None, sampler=None, num_shards=None, shard_id=None, cache=None):
super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples,
shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache)
self.num_images = num_images
self.image_size = image_size
self.num_classes = num_classes
self.base_seed = base_seed
def parse(self, children=None):
return cde.FakeImageNode(self.num_images, self.image_size, self.num_classes, self.base_seed, self.sampler)
class FlickrDataset(MappableDataset):
"""
A source dataset for reading and parsing Flickr8k and Flickr30k dataset.

View File

@ -1631,3 +1631,40 @@ def check_div2k_dataset(method):
return method(self, *args, **kwargs)
return new_method
def check_fake_image_dataset(method):
"""A wrapper that wraps a parameter checker around the original Dataset(FakeImageDataset)."""
@wraps(method)
def new_method(self, *args, **kwargs):
_, param_dict = parse_user_args(method, *args, **kwargs)
nreq_param_int = ['num_images', 'num_classes', 'base_seed', 'num_samples',
'num_parallel_workers', 'num_shards', 'shard_id']
nreq_param_bool = ['shuffle']
validate_dataset_param_value(nreq_param_int, param_dict, int)
validate_dataset_param_value(nreq_param_bool, param_dict, bool)
num_images = param_dict.get("num_images")
check_pos_int32(num_images, "num_images")
image_size = param_dict.get("image_size")
type_check(image_size, (list, tuple), "image_size")
if len(image_size) != 3:
raise ValueError("image_size should be a list or tuple of length 3, but got {0}".format(len(image_size)))
for i, value in enumerate(image_size):
check_pos_int32(value, "image_size[{0}]".format(i))
num_classes = param_dict.get("num_classes")
check_pos_int32(num_classes, "num_classes")
check_sampler_shuffle_shard_options(param_dict)
cache = param_dict.get('cache')
check_cache_option(cache)
return method(self, *args, **kwargs)
return new_method

View File

@ -24,6 +24,7 @@ SET(DE_UT_SRCS
c_api_dataset_csv_test.cc
c_api_dataset_div2k_test.cc
c_api_dataset_emnist_test.cc
c_api_dataset_fake_image_test.cc
c_api_dataset_flickr_test.cc
c_api_dataset_iterator_test.cc
c_api_dataset_manifest_test.cc

View File

@ -0,0 +1,238 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "minddata/dataset/include/dataset/datasets.h"
using namespace mindspore::dataset;
using mindspore::dataset::DataType;
using mindspore::dataset::Tensor;
using mindspore::dataset::TensorShape;
class MindDataTestPipeline : public UT::DatasetOpTesting {
protected:
};
/// Feature: FakeIamge
/// Description: test FakeImage
/// Expectation: get correct FakeImage dataset
TEST_F(MindDataTestPipeline, TestFakeImageDataset) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestFakeImageDataset.";
// Create a FakeImage Dataset
std::shared_ptr<Dataset> ds = FakeImage(50, {28, 28, 3}, 3, 0, std::make_shared<RandomSampler>(false, 10));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
ASSERT_OK(iter->GetNextRow(&row));
EXPECT_NE(row.find("image"), row.end());
EXPECT_NE(row.find("label"), row.end());
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
ASSERT_OK(iter->GetNextRow(&row));
}
EXPECT_EQ(i, 10);
// Manually terminate the pipeline
iter->Stop();
}
/// Feature: FakeIamge
/// Description: test FakeImage in pipeline mode
/// Expectation: get correct FakeImage dataset
TEST_F(MindDataTestPipeline, TestFakeImageDatasetWithPipeline) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestFakeImageDatasetWithPipeline.";
// Create two FakeImage Dataset
std::shared_ptr<Dataset> ds1 = FakeImage(50, {28, 28, 3}, 3, 0, std::make_shared<RandomSampler>(false, 10));
std::shared_ptr<Dataset> ds2 = FakeImage(50, {28, 28, 3}, 3, 0, std::make_shared<RandomSampler>(false, 10));
EXPECT_NE(ds1, nullptr);
EXPECT_NE(ds2, nullptr);
// Create two Repeat operation on ds
int32_t repeat_num = 2;
ds1 = ds1->Repeat(repeat_num);
EXPECT_NE(ds1, nullptr);
repeat_num = 2;
ds2 = ds2->Repeat(repeat_num);
EXPECT_NE(ds2, nullptr);
// Create two Project operation on ds
std::vector<std::string> column_project = {"image", "label"};
ds1 = ds1->Project(column_project);
EXPECT_NE(ds1, nullptr);
ds2 = ds2->Project(column_project);
EXPECT_NE(ds2, nullptr);
// Create a Concat operation on the ds
ds1 = ds1->Concat({ds2});
EXPECT_NE(ds1, nullptr);
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds1->CreateIterator();
EXPECT_NE(iter, nullptr);
// Iterate the dataset and get each row
std::unordered_map<std::string, mindspore::MSTensor> row;
ASSERT_OK(iter->GetNextRow(&row));
EXPECT_NE(row.find("image"), row.end());
EXPECT_NE(row.find("label"), row.end());
uint64_t i = 0;
while (row.size() != 0) {
i++;
auto image = row["image"];
MS_LOG(INFO) << "Tensor image shape: " << image.Shape();
ASSERT_OK(iter->GetNextRow(&row));
}
EXPECT_EQ(i, 40);
// Manually terminate the pipeline
iter->Stop();
}
/// Feature: FakeIamge
/// Description: test GetDataSize of FakeImage
/// Expectation: get the correct size of FakeImage
TEST_F(MindDataTestPipeline, TestGetFakeImageDatasetSize) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestGetFakeImageDatasetSize.";
// Create a FakeImage Dataset
std::shared_ptr<Dataset> ds = FakeImage(50, {28, 28, 3}, 3, 0);
EXPECT_NE(ds, nullptr);
EXPECT_EQ(ds->GetDatasetSize(), 50);
}
/// Feature: FakeIamge
/// Description: test DatasetGetters of FakeImage
/// Expectation: getters of FakeImage get the correct value
TEST_F(MindDataTestPipeline, TestFakeImageDatasetGetters) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestFakeImageDatasetGetters.";
// Create a FakeImage Dataset
std::shared_ptr<Dataset> ds = FakeImage(50, {28, 28, 3}, 3, 0);
EXPECT_NE(ds, nullptr);
EXPECT_EQ(ds->GetDatasetSize(), 50);
std::vector<DataType> types = ToDETypes(ds->GetOutputTypes());
std::vector<TensorShape> shapes = ToTensorShapeVec(ds->GetOutputShapes());
std::vector<std::string> column_names = {"image", "label"};
int64_t num_classes = ds->GetNumClasses();
EXPECT_EQ(types.size(), 2);
EXPECT_EQ(types[0].ToString(), "uint8");
EXPECT_EQ(types[1].ToString(), "uint32");
EXPECT_EQ(shapes.size(), 2);
EXPECT_EQ(shapes[0].ToString(), "<28,28,3>");
EXPECT_EQ(shapes[1].ToString(), "<>");
EXPECT_EQ(num_classes, -1);
EXPECT_EQ(ds->GetBatchSize(), 1);
EXPECT_EQ(ds->GetRepeatCount(), 1);
EXPECT_EQ(ds->GetDatasetSize(), 50);
EXPECT_EQ(ToDETypes(ds->GetOutputTypes()), types);
EXPECT_EQ(ToTensorShapeVec(ds->GetOutputShapes()), shapes);
EXPECT_EQ(ds->GetNumClasses(), -1);
EXPECT_EQ(ds->GetColumnNames(), column_names);
EXPECT_EQ(ds->GetDatasetSize(), 50);
EXPECT_EQ(ToDETypes(ds->GetOutputTypes()), types);
EXPECT_EQ(ToTensorShapeVec(ds->GetOutputShapes()), shapes);
EXPECT_EQ(ds->GetBatchSize(), 1);
EXPECT_EQ(ds->GetRepeatCount(), 1);
EXPECT_EQ(ds->GetNumClasses(), -1);
EXPECT_EQ(ds->GetDatasetSize(), 50);
}
/// Feature: FakeIamge
/// Description: test invalid num_images of FakeImage
/// Expectation: throw exception correctly
TEST_F(MindDataTestPipeline, TestFakeImageDatasetWithInvalidNumImages) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestFakeImageDatasetWithInvalidNumImages.";
// Create a FakeImage Dataset
std::shared_ptr<Dataset> ds = FakeImage(-1, {28, 28, 3}, 3, 0, std::make_shared<RandomSampler>(false, 10));
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: invalid FakeImage input
EXPECT_EQ(iter, nullptr);
}
/// Feature: FakeIamge
/// Description: test invalid image_size of FakeImage
/// Expectation: throw exception correctly
TEST_F(MindDataTestPipeline, TestFakeImageDatasetWithInvalidImageSize) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestFakeImageDatasetWithInvalidImageSize.";
// Create a FakeImage Dataset
std::shared_ptr<Dataset> ds = FakeImage(50, {-1, -1, -1}, 3, 0);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: invalid FakeImageD input, {-1,-1,-1} is not a valid imagesize
EXPECT_EQ(iter, nullptr);
}
/// Feature: FakeIamge
/// Description: test invalid num_classes of FakeImage
/// Expectation: throw exception correctly
TEST_F(MindDataTestPipeline, TestFakeImageDatasetWithInvalidNumClasses) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestFakeImageDatasetWithInvalidNumClasses.";
// Create a FakeImage Dataset
std::shared_ptr<Dataset> ds = FakeImage(50, {28, 28, 3}, -1, 0);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: invalid FakeImage input, -1 is not a valid num class
EXPECT_EQ(iter, nullptr);
}
/// Feature: FakeIamge
/// Description: test FakeImage dataset with null sampler
/// Expectation: dataset is null
TEST_F(MindDataTestPipeline, TestFakeImageDatasetWithNullSampler) {
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestFakeImageDatasetWithNullSampler.";
// Create a FakeImage Dataset
std::shared_ptr<Dataset> ds = FakeImage(50, {28, 28, 3}, 3, 0, nullptr);
EXPECT_NE(ds, nullptr);
// Create an iterator over the result of the above dataset
std::shared_ptr<Iterator> iter = ds->CreateIterator();
// Expect failure: invalid FakeImage input, sampler cannot be nullptr
EXPECT_EQ(iter, nullptr);
}

View File

@ -0,0 +1,303 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Test FakeImage dataset operators
"""
import matplotlib.pyplot as plt
import numpy as np
import pytest
import mindspore.dataset as ds
from mindspore import log as logger
num_images = 50
image_size = (28, 28, 3)
num_classes = 10
base_seed = 0
def visualize_dataset(images, labels):
"""
Helper function to visualize the dataset samples
"""
num_samples = len(images)
for i in range(num_samples):
plt.subplot(1, num_samples, i + 1)
plt.imshow(images[i].squeeze(), cmap=plt.cm.gray)
plt.title(labels[i])
plt.show()
def test_fake_image_basic():
"""
Feature: FakeImage
Description: test basic usage of FakeImage
Expectation: the dataset is as expected
"""
logger.info("Test FakeImageDataset Op")
# case 1: test loading whole dataset
train_data = ds.FakeImageDataset(num_images, image_size, num_classes, base_seed)
num_iter1 = 0
for _ in train_data.create_dict_iterator(num_epochs=1):
num_iter1 += 1
assert num_iter1 == num_images
# case 2: test num_samples
train_data = ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_samples=4)
num_iter2 = 0
for _ in train_data.create_dict_iterator(num_epochs=1):
num_iter2 += 1
assert num_iter2 == 4
# case 3: test repeat
train_data = ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_samples=4)
train_data = train_data.repeat(5)
num_iter3 = 0
for _ in train_data.create_dict_iterator(num_epochs=1):
num_iter3 += 1
assert num_iter3 == 20
# case 4: test batch with drop_remainder=False, get_dataset_size, get_batch_size, get_col_names
train_data = ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_samples=4)
assert train_data.get_dataset_size() == 4
assert train_data.get_batch_size() == 1
assert train_data.get_col_names() == ['image', 'label']
train_data = train_data.batch(batch_size=3) # drop_remainder is default to be False
assert train_data.get_dataset_size() == 2
assert train_data.get_batch_size() == 3
num_iter4 = 0
for _ in train_data.create_dict_iterator(num_epochs=1):
num_iter4 += 1
assert num_iter4 == 2
# case 5: test batch with drop_remainder=True
train_data = ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_samples=4)
assert train_data.get_dataset_size() == 4
assert train_data.get_batch_size() == 1
train_data = train_data.batch(batch_size=3, drop_remainder=True) # the rest of incomplete batch will be dropped
assert train_data.get_dataset_size() == 1
assert train_data.get_batch_size() == 3
num_iter5 = 0
for _ in train_data.create_dict_iterator(num_epochs=1):
num_iter5 += 1
assert num_iter5 == 1
def test_fake_image_pk_sampler():
"""
Feature: FakeImage
Description: test FakeImageDataset with PKSamplere
Expectation: the results are as expected
"""
logger.info("Test FakeImageDataset Op with PKSampler")
golden = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9]
#correlation with num_classes
sampler = ds.PKSampler(3)
train_data = ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, sampler=sampler)
num_iter = 0
label_list = []
for item in train_data.create_dict_iterator(num_epochs=1, output_numpy=True):
label_list.append(item["label"])
num_iter += 1
np.testing.assert_array_equal(golden, label_list)
assert num_iter == 30
def test_fake_image_sequential_sampler():
"""
Feature: FakeImage
Description: test FakeImageDataset with SequentialSampler
Expectation: the results are as expected
"""
logger.info("Test FakeImageDataset Op with SequentialSampler")
num_samples = 50
sampler = ds.SequentialSampler(num_samples=num_samples)
train_data1 = ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, sampler=sampler)
train_data2 = ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, shuffle=False,
num_samples=num_samples)
label_list1, label_list2 = [], []
num_iter = 0
for item1, item2 in zip(train_data1.create_dict_iterator(num_epochs=1),
train_data2.create_dict_iterator(num_epochs=1)):
label_list1.append(item1["label"].asnumpy())
label_list2.append(item2["label"].asnumpy())
num_iter += 1
np.testing.assert_array_equal(label_list1, label_list2)
assert num_iter == num_samples
def test_fake_image_exception():
"""
Feature: FakeImage
Description: test error cases for FakeImageDataset
Expectation: throw exception correctly
"""
logger.info("Test error cases for FakeImageDataset")
error_msg_1 = "sampler and shuffle cannot be specified at the same time"
with pytest.raises(RuntimeError, match=error_msg_1):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, shuffle=False, sampler=ds.PKSampler(3))
error_msg_2 = "sampler and sharding cannot be specified at the same time"
with pytest.raises(RuntimeError, match=error_msg_2):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, sampler=ds.PKSampler(3), num_shards=2,
shard_id=0)
error_msg_3 = "num_shards is specified and currently requires shard_id as well"
with pytest.raises(RuntimeError, match=error_msg_3):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_shards=10)
error_msg_4 = "shard_id is specified but num_shards is not"
with pytest.raises(RuntimeError, match=error_msg_4):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, shard_id=0)
error_msg_5 = "Input shard_id is not within the required interval"
with pytest.raises(ValueError, match=error_msg_5):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_shards=5, shard_id=-1)
with pytest.raises(ValueError, match=error_msg_5):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_shards=5, shard_id=5)
with pytest.raises(ValueError, match=error_msg_5):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_shards=2, shard_id=5)
error_msg_6 = "num_parallel_workers exceeds"
with pytest.raises(ValueError, match=error_msg_6):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, shuffle=False, num_parallel_workers=0)
with pytest.raises(ValueError, match=error_msg_6):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, shuffle=False, num_parallel_workers=256)
with pytest.raises(ValueError, match=error_msg_6):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, shuffle=False, num_parallel_workers=-2)
error_msg_7 = "Argument shard_id"
with pytest.raises(TypeError, match=error_msg_7):
ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_shards=2, shard_id="0")
def test_fake_image_visualize(plot=False):
"""
Feature: FakeImage
Description: test FakeImageDataset visualized results
Expectation: get correct dataset of FakeImage
"""
logger.info("Test FakeImageDataset visualization")
train_data = ds.FakeImageDataset(num_images, image_size, num_classes, base_seed, num_samples=10, shuffle=False)
num_iter = 0
image_list, label_list = [], []
for item in train_data.create_dict_iterator(num_epochs=1, output_numpy=True):
image = item["image"]
label = item["label"]
image_list.append(image)
label_list.append("label {}".format(label))
assert isinstance(image, np.ndarray)
assert image.shape == (28, 28, 3)
assert image.dtype == np.uint8
assert label.dtype == np.uint32
num_iter += 1
assert num_iter == 10
if plot:
visualize_dataset(image_list, label_list)
def test_fake_image_num_images():
"""
Feature: FakeImage
Description: test FakeImageDataset with num images
Expectation: throw exception correctly or get correct dataset
"""
logger.info("Test FakeImageDataset num_images flag")
def test_config(test_num_images):
try:
data = ds.FakeImageDataset(test_num_images, image_size, num_classes, base_seed, shuffle=False)
num_rows = 0
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
num_rows += 1
except (ValueError, TypeError, RuntimeError) as e:
return str(e)
return num_rows
assert test_config(num_images) == num_images
assert "Input num_images is not within the required interval of [1, 2147483647]." in test_config(-1)
assert "is not of type [<class 'int'>], but got <class 'str'>." in test_config("10")
def test_fake_image_image_size():
"""
Feature: FakeImage
Description: test FakeImageDataset with image size
Expectation: throw exception correctly or get correct dataset
"""
logger.info("Test FakeImageDataset image_size flag")
def test_config(test_image_size):
try:
data = ds.FakeImageDataset(num_images, test_image_size, num_classes, base_seed, shuffle=False)
num_rows = 0
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
num_rows += 1
except (ValueError, TypeError, RuntimeError) as e:
return str(e)
return num_rows
assert test_config(image_size) == num_images
assert "Argument image_size[0] with value -1 is not of type [<class 'int'>], but got <class 'str'>."\
in test_config(("-1", 28, 3))
assert "image_size should be a list or tuple of length 3, but got 2" in test_config((2, 2))
assert "Input image_size[0] is not within the required interval of [1, 2147483647]." in test_config((-1, 28, 3))
def test_fake_image_num_classes():
"""
Feature: FakeImage
Description: test FakeImageDataset with num classes
Expectation: throw exception correctly or get correct dataset
"""
logger.info("Test FakeImageDataset num_classes flag")
def test_config(test_num_classes):
try:
data = ds.FakeImageDataset(num_images, image_size, test_num_classes, base_seed, shuffle=False)
num_rows = 0
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
num_rows += 1
except (ValueError, TypeError, RuntimeError) as e:
return str(e)
return num_rows
assert test_config(num_classes) == num_images
assert "Input num_classes is not within the required interval of [1, 2147483647]." in test_config(-1)
#should not be negative
assert "is not of type [<class 'int'>], but got <class 'str'>." in test_config("10")
if __name__ == '__main__':
test_fake_image_basic()
test_fake_image_pk_sampler()
test_fake_image_sequential_sampler()
test_fake_image_exception()
test_fake_image_visualize(plot=True)
test_fake_image_num_images()
test_fake_image_image_size()
test_fake_image_num_classes()