Make function parameters work

This commit is contained in:
zhangyihui 2020-07-20 21:10:25 +08:00
parent 11145b0987
commit d22339b88a
2 changed files with 174 additions and 10 deletions

View File

@ -27,6 +27,7 @@ from mindspore.profiler.parser.container import TimelineContainer
SIZE_LIMIT = 20 * 1024 * 1024 # 20MB SIZE_LIMIT = 20 * 1024 * 1024 # 20MB
class Integrator: class Integrator:
""" """
The integrator for integrating parsed profiling files. The integrator for integrating parsed profiling files.
@ -47,10 +48,12 @@ class Integrator:
_file_name_aicore_type_time = 'aicore_intermediate_{}_type.csv' _file_name_aicore_type_time = 'aicore_intermediate_{}_type.csv'
_file_name_aicore_detail_info = 'aicore_intermediate_{}_detail.csv' _file_name_aicore_detail_info = 'aicore_intermediate_{}_detail.csv'
_col_names_detail = ['op_name', 'op_type', 'avg_execution_time', 'subgraph', 'full_op_name', 'op_info']
_none_filter_condition_key = ['is_display_detail', 'is_display_full_op_name']
_none_sort_col_names = ['op_info']
_aicore_data = [] _aicore_data = []
_aicore_detail_data = [] _aicore_detail_data = []
_aicore_trace_data = [] _aicore_trace_data = []
_col_names = []
def __init__(self, profiling_dir, device_id): def __init__(self, profiling_dir, device_id):
self._profiling_dir = profiling_dir self._profiling_dir = profiling_dir
@ -79,6 +82,8 @@ class Integrator:
def query_for_all_reduce(self): def query_for_all_reduce(self):
return self._query_for_all_reduce() return self._query_for_all_reduce()
def query_and_sort_by_op_type(self, filter_condition, op_type_order):
return self._query_and_sort_by_op_type(filter_condition, op_type_order)
def _parse_aicore_type_time(self): def _parse_aicore_type_time(self):
"""Parse the parsed AICORE operator type file.""" """Parse the parsed AICORE operator type file."""
@ -241,7 +246,6 @@ class Integrator:
) )
del framework_infos del framework_infos
def _aicore_trace_data_load(self): def _aicore_trace_data_load(self):
"""Load data according to the parsed AICORE operator types file.""" """Load data according to the parsed AICORE operator types file."""
file_path = query_latest_trace_time_file(self._profiling_dir, int(self._device_id)) file_path = query_latest_trace_time_file(self._profiling_dir, int(self._device_id))
@ -253,7 +257,6 @@ class Integrator:
self.__column__ = next(csv_reader) self.__column__ = next(csv_reader)
self._aicore_trace_data = list(csv_reader) self._aicore_trace_data = list(csv_reader)
self._size = len(self._aicore_trace_data) - 1 self._size = len(self._aicore_trace_data) - 1
self._display_col_names = self._col_names[:]
self._load_point_info() self._load_point_info()
def _load_point_info(self): def _load_point_info(self):
@ -342,6 +345,144 @@ class Integrator:
return reduce_info return reduce_info
def _query_and_sort_by_op_type(self, filter_condition, op_type_order: list):
"""
Query the AICORE operator detail information by `filter_condition`,
and sort by `op_type_order` and execution time.
Args:
filter_condition (dict): The filter condition.
op_type_order (list[str]): The name of the operator type in order.
Returns:
dict, The results are filtered and sorted.
"""
self._aicore_detail_data_load()
if filter_condition is None:
filter_condition = {}
self._filter(filter_condition)
type_detail_cache = {}
for detail_info in self._result:
op_type = detail_info[1]
if op_type not in op_type_order:
continue
infos = type_detail_cache.get(op_type)
if infos:
infos.append(detail_info)
else:
type_detail_cache[op_type] = [detail_info]
result = []
for op_type in op_type_order:
detail_infos = type_detail_cache.get(op_type)
if detail_infos is None:
continue
detail_infos.sort(key=lambda item: item[2], reverse=True)
result.extend(detail_infos)
return {
'col_name_detail': self._display_col_names_detail,
'object': result
}
def _filter(self, filter_condition):
"""
Filter the profiling data according to the filter condition.
Args:
filter_condition (dict): The filter condition.
"""
def _inner_filter(item: list):
return self._default_filter(item, filter_condition)
def _inner_map(item: list):
inner_item = item[0:4]
if is_display_full_op_name:
inner_item.append(item[4])
if is_display_detail:
inner_item.append(item[5])
return inner_item
is_display_detail = filter_condition.get('is_display_detail', True)
is_display_full_op_name = filter_condition.get(
'is_display_full_op_name', True
)
self._set_display_col_name(is_display_detail, is_display_full_op_name)
if is_display_detail and is_display_full_op_name:
self._result = list(filter(_inner_filter, self._aicore_detail_data))
else:
self._result = list(
map(_inner_map, filter(_inner_filter, self._aicore_detail_data))
)
def _default_filter(self, item, condition):
"""
The default filter method.
Args:
item (list[Union[str, float, int]]): A piece of data to be filtered.
condition (dict): The filter condition.
Returns:
bool, `True` if the item is satisfied.
"""
for condition_key, condition_value in condition.items():
if condition_key in self._none_filter_condition_key:
continue
if condition_key in self._col_names_detail:
index = self._col_names_detail.index(condition_key)
actual_value = item[index]
for exp_key, exp_value in condition_value.items():
if not self._is_match_condition(
exp_key, exp_value, actual_value):
return False
return True
def _is_match_condition(self, exp_key, exp_value, actual_value):
"""
Check whether the actual value meets the expect condition.
Args:
exp_key (str): Expect key of the condition.
exp_value (str): Expect value.
actual_value (str): Actual value.
Returns:
bool, `True` if the actual meets the expect condition, else `False`.
"""
if exp_key == 'in':
if actual_value not in exp_value:
return False
elif exp_key == 'not_in':
if actual_value in exp_value:
return False
elif exp_key == 'partial_match_str_in':
for partial_match_str in exp_value:
if partial_match_str in actual_value:
return True
return False
else:
return False
return True
def _set_display_col_name(self, is_display_detail, is_display_full_op_name):
"""
Set the display column name according to the filter condition.
Args:
is_display_detail (bool): Whether to display the detailed operator
information.
is_display_full_op_name (bool): Whether to display the operator full
name.
"""
self._display_col_names_detail = self._col_names_detail[0:4]
if is_display_full_op_name:
self._display_col_names_detail.append(self._col_names_detail[4])
if is_display_detail:
self._display_col_names_detail.append(self._col_names_detail[5])
class TimelineAnalyser: class TimelineAnalyser:
""" """
@ -577,5 +718,4 @@ class TimelineAnalyser:
if framework_item: if framework_item:
timeline_item['name'] = framework_item.get('name') timeline_item['name'] = framework_item.get('name')
timeline_item['args'] = framework_item.get('args') timeline_item['args'] = framework_item.get('args')
logger.debug('Finished adding framework info into timeline...') logger.debug('Finished adding framework info into timeline...')

View File

@ -35,6 +35,7 @@ from mindspore.profiler.parser.minddata_pipeline_parser import \
MinddataPipelineParser MinddataPipelineParser
from mindspore.profiler.parser.optime_parser import OPComputeTimeParser from mindspore.profiler.parser.optime_parser import OPComputeTimeParser
from mindspore.profiler.parser.step_trace_parser import StepTraceParser from mindspore.profiler.parser.step_trace_parser import StepTraceParser
from mindspore.nn.cell import Cell
PROFILING_LOG_BASE_PATH = "/var/log/npu/profiling" PROFILING_LOG_BASE_PATH = "/var/log/npu/profiling"
INIT_OP_NAME = 'Default/InitDataSetQueue' INIT_OP_NAME = 'Default/InitDataSetQueue'
@ -352,10 +353,9 @@ class Profiler:
fwrite_format(detail_file_path, data_source='', is_print=True) fwrite_format(detail_file_path, data_source='', is_print=True)
fwrite_format(detail_file_path, data_source='Detail:', is_print=True) fwrite_format(detail_file_path, data_source='Detail:', is_print=True)
col_names = ['op_name', 'op_type', 'avg_execution_time', 'subgraph', fwrite_format(detail_file_path, data_source=" ".join(aicore_detail_result.get('col_name_detail')),
'full_op_name', 'op_info'] is_print=True)
fwrite_format(detail_file_path, data_source=" ".join(col_names), is_print=True) fwrite_format(detail_file_path, data_source=aicore_detail_result.get('object'), is_print=True)
fwrite_format(detail_file_path, data_source=aicore_detail_result, is_print=True)
def _query_op_type_info(self): def _query_op_type_info(self):
""" """
@ -388,9 +388,14 @@ class Profiler:
if self._subgraph != 'all': if self._subgraph != 'all':
subgraph_condition['in'] = [self._subgraph] subgraph_condition['in'] = [self._subgraph]
filter_condition = {
'op_type': op_type_condition,
'subgraph': subgraph_condition,
'is_display_detail': False,
'is_display_full_op_name': self._withfullpath
}
integrator = Integrator(self._output_path, self._dev_id) integrator = Integrator(self._output_path, self._dev_id)
return integrator.get_aicore_detail_data() return integrator.query_and_sort_by_op_type(filter_condition, op_type_order)
def _get_devid_and_devtarget(self): def _get_devid_and_devtarget(self):
"""Get device id and target of this training.""" """Get device id and target of this training."""
@ -415,3 +420,22 @@ class Profiler:
raise RuntimeError(msg) raise RuntimeError(msg)
self._dev_id = dev_id self._dev_id = dev_id
@staticmethod
def trainable_parameters(network):
"""
Get the number of trainable parameters in the training network.
Args:
network(Cell): The training network.
Returns:
an integer,the network of trainable parameters.
"""
if not isinstance(network, Cell):
msg = "Profiling: The network should be an object of nn.Cell"
raise ValueError(msg)
param_nums = len(network.parameters_dict())
return param_nums