forked from mindspore-Ecosystem/mindspore
Make function parameters work
This commit is contained in:
parent
11145b0987
commit
d22339b88a
|
@ -27,6 +27,7 @@ from mindspore.profiler.parser.container import TimelineContainer
|
|||
|
||||
SIZE_LIMIT = 20 * 1024 * 1024 # 20MB
|
||||
|
||||
|
||||
class Integrator:
|
||||
"""
|
||||
The integrator for integrating parsed profiling files.
|
||||
|
@ -47,10 +48,12 @@ class Integrator:
|
|||
|
||||
_file_name_aicore_type_time = 'aicore_intermediate_{}_type.csv'
|
||||
_file_name_aicore_detail_info = 'aicore_intermediate_{}_detail.csv'
|
||||
_col_names_detail = ['op_name', 'op_type', 'avg_execution_time', 'subgraph', 'full_op_name', 'op_info']
|
||||
_none_filter_condition_key = ['is_display_detail', 'is_display_full_op_name']
|
||||
_none_sort_col_names = ['op_info']
|
||||
_aicore_data = []
|
||||
_aicore_detail_data = []
|
||||
_aicore_trace_data = []
|
||||
_col_names = []
|
||||
|
||||
def __init__(self, profiling_dir, device_id):
|
||||
self._profiling_dir = profiling_dir
|
||||
|
@ -79,6 +82,8 @@ class Integrator:
|
|||
def query_for_all_reduce(self):
|
||||
return self._query_for_all_reduce()
|
||||
|
||||
def query_and_sort_by_op_type(self, filter_condition, op_type_order):
|
||||
return self._query_and_sort_by_op_type(filter_condition, op_type_order)
|
||||
|
||||
def _parse_aicore_type_time(self):
|
||||
"""Parse the parsed AICORE operator type file."""
|
||||
|
@ -241,7 +246,6 @@ class Integrator:
|
|||
)
|
||||
del framework_infos
|
||||
|
||||
|
||||
def _aicore_trace_data_load(self):
|
||||
"""Load data according to the parsed AICORE operator types file."""
|
||||
file_path = query_latest_trace_time_file(self._profiling_dir, int(self._device_id))
|
||||
|
@ -253,7 +257,6 @@ class Integrator:
|
|||
self.__column__ = next(csv_reader)
|
||||
self._aicore_trace_data = list(csv_reader)
|
||||
self._size = len(self._aicore_trace_data) - 1
|
||||
self._display_col_names = self._col_names[:]
|
||||
self._load_point_info()
|
||||
|
||||
def _load_point_info(self):
|
||||
|
@ -342,6 +345,144 @@ class Integrator:
|
|||
|
||||
return reduce_info
|
||||
|
||||
def _query_and_sort_by_op_type(self, filter_condition, op_type_order: list):
|
||||
"""
|
||||
Query the AICORE operator detail information by `filter_condition`,
|
||||
and sort by `op_type_order` and execution time.
|
||||
|
||||
Args:
|
||||
filter_condition (dict): The filter condition.
|
||||
op_type_order (list[str]): The name of the operator type in order.
|
||||
|
||||
Returns:
|
||||
dict, The results are filtered and sorted.
|
||||
"""
|
||||
self._aicore_detail_data_load()
|
||||
if filter_condition is None:
|
||||
filter_condition = {}
|
||||
self._filter(filter_condition)
|
||||
|
||||
type_detail_cache = {}
|
||||
for detail_info in self._result:
|
||||
op_type = detail_info[1]
|
||||
if op_type not in op_type_order:
|
||||
continue
|
||||
infos = type_detail_cache.get(op_type)
|
||||
if infos:
|
||||
infos.append(detail_info)
|
||||
else:
|
||||
type_detail_cache[op_type] = [detail_info]
|
||||
|
||||
result = []
|
||||
for op_type in op_type_order:
|
||||
detail_infos = type_detail_cache.get(op_type)
|
||||
if detail_infos is None:
|
||||
continue
|
||||
detail_infos.sort(key=lambda item: item[2], reverse=True)
|
||||
result.extend(detail_infos)
|
||||
|
||||
return {
|
||||
'col_name_detail': self._display_col_names_detail,
|
||||
'object': result
|
||||
}
|
||||
|
||||
def _filter(self, filter_condition):
|
||||
"""
|
||||
Filter the profiling data according to the filter condition.
|
||||
|
||||
Args:
|
||||
filter_condition (dict): The filter condition.
|
||||
"""
|
||||
def _inner_filter(item: list):
|
||||
return self._default_filter(item, filter_condition)
|
||||
|
||||
def _inner_map(item: list):
|
||||
inner_item = item[0:4]
|
||||
if is_display_full_op_name:
|
||||
inner_item.append(item[4])
|
||||
if is_display_detail:
|
||||
inner_item.append(item[5])
|
||||
return inner_item
|
||||
|
||||
is_display_detail = filter_condition.get('is_display_detail', True)
|
||||
is_display_full_op_name = filter_condition.get(
|
||||
'is_display_full_op_name', True
|
||||
)
|
||||
self._set_display_col_name(is_display_detail, is_display_full_op_name)
|
||||
if is_display_detail and is_display_full_op_name:
|
||||
self._result = list(filter(_inner_filter, self._aicore_detail_data))
|
||||
else:
|
||||
self._result = list(
|
||||
map(_inner_map, filter(_inner_filter, self._aicore_detail_data))
|
||||
)
|
||||
|
||||
def _default_filter(self, item, condition):
|
||||
"""
|
||||
The default filter method.
|
||||
|
||||
Args:
|
||||
item (list[Union[str, float, int]]): A piece of data to be filtered.
|
||||
condition (dict): The filter condition.
|
||||
|
||||
Returns:
|
||||
bool, `True` if the item is satisfied.
|
||||
"""
|
||||
for condition_key, condition_value in condition.items():
|
||||
if condition_key in self._none_filter_condition_key:
|
||||
continue
|
||||
if condition_key in self._col_names_detail:
|
||||
index = self._col_names_detail.index(condition_key)
|
||||
actual_value = item[index]
|
||||
for exp_key, exp_value in condition_value.items():
|
||||
if not self._is_match_condition(
|
||||
exp_key, exp_value, actual_value):
|
||||
return False
|
||||
return True
|
||||
|
||||
def _is_match_condition(self, exp_key, exp_value, actual_value):
|
||||
"""
|
||||
Check whether the actual value meets the expect condition.
|
||||
|
||||
Args:
|
||||
exp_key (str): Expect key of the condition.
|
||||
exp_value (str): Expect value.
|
||||
actual_value (str): Actual value.
|
||||
|
||||
Returns:
|
||||
bool, `True` if the actual meets the expect condition, else `False`.
|
||||
"""
|
||||
if exp_key == 'in':
|
||||
if actual_value not in exp_value:
|
||||
return False
|
||||
elif exp_key == 'not_in':
|
||||
if actual_value in exp_value:
|
||||
return False
|
||||
elif exp_key == 'partial_match_str_in':
|
||||
for partial_match_str in exp_value:
|
||||
if partial_match_str in actual_value:
|
||||
return True
|
||||
return False
|
||||
else:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def _set_display_col_name(self, is_display_detail, is_display_full_op_name):
|
||||
"""
|
||||
Set the display column name according to the filter condition.
|
||||
|
||||
Args:
|
||||
is_display_detail (bool): Whether to display the detailed operator
|
||||
information.
|
||||
is_display_full_op_name (bool): Whether to display the operator full
|
||||
name.
|
||||
"""
|
||||
self._display_col_names_detail = self._col_names_detail[0:4]
|
||||
if is_display_full_op_name:
|
||||
self._display_col_names_detail.append(self._col_names_detail[4])
|
||||
if is_display_detail:
|
||||
self._display_col_names_detail.append(self._col_names_detail[5])
|
||||
|
||||
|
||||
class TimelineAnalyser:
|
||||
"""
|
||||
|
@ -577,5 +718,4 @@ class TimelineAnalyser:
|
|||
if framework_item:
|
||||
timeline_item['name'] = framework_item.get('name')
|
||||
timeline_item['args'] = framework_item.get('args')
|
||||
|
||||
logger.debug('Finished adding framework info into timeline...')
|
||||
|
|
|
@ -35,6 +35,7 @@ from mindspore.profiler.parser.minddata_pipeline_parser import \
|
|||
MinddataPipelineParser
|
||||
from mindspore.profiler.parser.optime_parser import OPComputeTimeParser
|
||||
from mindspore.profiler.parser.step_trace_parser import StepTraceParser
|
||||
from mindspore.nn.cell import Cell
|
||||
|
||||
PROFILING_LOG_BASE_PATH = "/var/log/npu/profiling"
|
||||
INIT_OP_NAME = 'Default/InitDataSetQueue'
|
||||
|
@ -352,10 +353,9 @@ class Profiler:
|
|||
|
||||
fwrite_format(detail_file_path, data_source='', is_print=True)
|
||||
fwrite_format(detail_file_path, data_source='Detail:', is_print=True)
|
||||
col_names = ['op_name', 'op_type', 'avg_execution_time', 'subgraph',
|
||||
'full_op_name', 'op_info']
|
||||
fwrite_format(detail_file_path, data_source=" ".join(col_names), is_print=True)
|
||||
fwrite_format(detail_file_path, data_source=aicore_detail_result, is_print=True)
|
||||
fwrite_format(detail_file_path, data_source=" ".join(aicore_detail_result.get('col_name_detail')),
|
||||
is_print=True)
|
||||
fwrite_format(detail_file_path, data_source=aicore_detail_result.get('object'), is_print=True)
|
||||
|
||||
def _query_op_type_info(self):
|
||||
"""
|
||||
|
@ -388,9 +388,14 @@ class Profiler:
|
|||
if self._subgraph != 'all':
|
||||
subgraph_condition['in'] = [self._subgraph]
|
||||
|
||||
filter_condition = {
|
||||
'op_type': op_type_condition,
|
||||
'subgraph': subgraph_condition,
|
||||
'is_display_detail': False,
|
||||
'is_display_full_op_name': self._withfullpath
|
||||
}
|
||||
integrator = Integrator(self._output_path, self._dev_id)
|
||||
return integrator.get_aicore_detail_data()
|
||||
|
||||
return integrator.query_and_sort_by_op_type(filter_condition, op_type_order)
|
||||
|
||||
def _get_devid_and_devtarget(self):
|
||||
"""Get device id and target of this training."""
|
||||
|
@ -415,3 +420,22 @@ class Profiler:
|
|||
raise RuntimeError(msg)
|
||||
|
||||
self._dev_id = dev_id
|
||||
|
||||
@staticmethod
|
||||
def trainable_parameters(network):
|
||||
"""
|
||||
Get the number of trainable parameters in the training network.
|
||||
|
||||
Args:
|
||||
network(Cell): The training network.
|
||||
|
||||
Returns:
|
||||
an integer,the network of trainable parameters.
|
||||
"""
|
||||
if not isinstance(network, Cell):
|
||||
msg = "Profiling: The network should be an object of nn.Cell"
|
||||
raise ValueError(msg)
|
||||
|
||||
param_nums = len(network.parameters_dict())
|
||||
|
||||
return param_nums
|
||||
|
|
Loading…
Reference in New Issue