forked from mindspore-Ecosystem/mindspore
fix pclint
This commit is contained in:
parent
1fb68a2612
commit
cf49d8bf04
|
@ -43,7 +43,7 @@ Status Linspace(std::shared_ptr<Tensor> *output, T start, T end, int n) {
|
|||
TensorShape out_shape({n});
|
||||
std::vector<T> linear_vect(n);
|
||||
T interval = (n == 1) ? 0 : ((end - start) / (n - 1));
|
||||
for (int i = 0; i < linear_vect.size(); ++i) {
|
||||
for (auto i = 0; i < linear_vect.size(); ++i) {
|
||||
linear_vect[i] = start + i * interval;
|
||||
}
|
||||
std::shared_ptr<Tensor> out_t;
|
||||
|
@ -158,13 +158,14 @@ template <typename T>
|
|||
Status PadComplexTensor(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, int length, int dim) {
|
||||
TensorShape input_shape = input->shape();
|
||||
std::vector<int64_t> pad_shape_vec = {input_shape[0], input_shape[1], input_shape[2], input_shape[3]};
|
||||
pad_shape_vec[dim] += length;
|
||||
pad_shape_vec[dim] += static_cast<int64_t>(length);
|
||||
TensorShape input_shape_with_pad(pad_shape_vec);
|
||||
std::vector<T> in_vect(input_shape_with_pad[0] * input_shape_with_pad[1] * input_shape_with_pad[2] *
|
||||
input_shape_with_pad[3]);
|
||||
auto itr_input = input->begin<T>();
|
||||
int input_cnt = 0;
|
||||
for (int ind = 0; ind < in_vect.size(); ind++) {
|
||||
int64_t input_cnt = 0;
|
||||
/*lint -e{446} ind is modified in the body of the for loop */
|
||||
for (int ind = 0; ind < static_cast<int>(in_vect.size()); ind++) {
|
||||
in_vect[ind] = (*itr_input);
|
||||
input_cnt = (input_cnt + 1) % (input_shape[2] * input_shape[3]);
|
||||
itr_input++;
|
||||
|
@ -210,18 +211,18 @@ Status Phase(const std::shared_ptr<Tensor> &angle_0, const std::shared_ptr<Tenso
|
|||
}
|
||||
|
||||
// concat phase time 0
|
||||
int ind = 0;
|
||||
int64_t ind = 0;
|
||||
auto itr_p0 = phase_time0->begin<T>();
|
||||
phase.insert(phase.begin(), (*itr_p0));
|
||||
(void)phase.insert(phase.begin(), (*itr_p0));
|
||||
while (itr_p0 != phase_time0->end<T>()) {
|
||||
itr_p0++;
|
||||
ind += phase_shape[2];
|
||||
phase[ind] = (*itr_p0);
|
||||
}
|
||||
phase.erase(phase.begin() + static_cast<int>(angle_0->Size()), phase.end());
|
||||
(void)phase.erase(phase.begin() + static_cast<int>(angle_0->Size()), phase.end());
|
||||
|
||||
// cal phase accum
|
||||
for (ind = 0; ind < phase.size(); ind++) {
|
||||
for (ind = 0; ind < static_cast<int64_t>(phase.size()); ind++) {
|
||||
if (ind % phase_shape[2] != 0) {
|
||||
phase[ind] = phase[ind] + phase[ind - 1];
|
||||
}
|
||||
|
@ -267,12 +268,13 @@ Status TimeStretch(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *outpu
|
|||
return Status::OK();
|
||||
}
|
||||
// calculate time step and alphas
|
||||
int ind = 0;
|
||||
std::vector<dsize_t> time_steps_0, time_steps_1;
|
||||
std::vector<T> alphas;
|
||||
for (T val = 0;; ind++) {
|
||||
val = ind * rate;
|
||||
if (val >= input_shape[-2]) break;
|
||||
for (int ind = 0;; ind++) {
|
||||
auto val = ind * rate;
|
||||
if (val >= input_shape[-2]) {
|
||||
break;
|
||||
}
|
||||
int val_int = static_cast<int>(val);
|
||||
time_steps_0.push_back(val_int);
|
||||
time_steps_1.push_back(val_int + 1);
|
||||
|
@ -327,7 +329,7 @@ Status TimeStretch(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *outpu
|
|||
return Status::OK();
|
||||
}
|
||||
|
||||
Status TimeStretch(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output, float rate, float hop_length,
|
||||
Status TimeStretch(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, float rate, float hop_length,
|
||||
float n_freq) {
|
||||
std::shared_ptr<Tensor> phase_advance;
|
||||
switch (input->type().value()) {
|
||||
|
@ -366,7 +368,7 @@ Status MaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tenso
|
|||
TensorShape input_shape = input->shape();
|
||||
// squeeze input
|
||||
TensorShape squeeze_shape = TensorShape({-1, input_shape[-2], input_shape[-1]});
|
||||
input->Reshape(squeeze_shape);
|
||||
(void)input->Reshape(squeeze_shape);
|
||||
|
||||
int check_dim_ind = (axis == 1) ? -2 : -1;
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(0 <= mask_start && mask_start <= input_shape[check_dim_ind],
|
||||
|
@ -413,7 +415,7 @@ Status MaskAlongAxis(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tenso
|
|||
}
|
||||
}
|
||||
// unsqueeze input
|
||||
input->Reshape(input_shape);
|
||||
(void)input->Reshape(input_shape);
|
||||
*output = input;
|
||||
return Status::OK();
|
||||
}
|
||||
|
@ -422,7 +424,7 @@ template <typename T>
|
|||
Status Norm(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, float power) {
|
||||
// calculate the output dimension
|
||||
auto input_size = input->shape().AsVector();
|
||||
int32_t dim_back = input_size.back();
|
||||
int32_t dim_back = static_cast<int32_t>(input_size.back());
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(
|
||||
dim_back == 2, "ComplexNorm: expect complex input of shape <..., 2>, but got: " + std::to_string(dim_back));
|
||||
input_size.pop_back();
|
||||
|
@ -452,11 +454,11 @@ Status ComplexNorm(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor>
|
|||
std::shared_ptr<Tensor> input_tensor;
|
||||
RETURN_IF_NOT_OK(TypeCast(input, &input_tensor, DataType(DataType::DE_FLOAT32)));
|
||||
|
||||
Norm<float>(input_tensor, output, power);
|
||||
RETURN_IF_NOT_OK(Norm<float>(input_tensor, output, power));
|
||||
} else if (input->type().value() == DataType::DE_FLOAT32) {
|
||||
Norm<float>(input, output, power);
|
||||
RETURN_IF_NOT_OK(Norm<float>(input, output, power));
|
||||
} else if (input->type().value() == DataType::DE_FLOAT64) {
|
||||
Norm<double>(input, output, power);
|
||||
RETURN_IF_NOT_OK(Norm<double>(input, output, power));
|
||||
} else {
|
||||
RETURN_STATUS_UNEXPECTED("ComplexNorm: input tensor type should be int, float or double, but got: " +
|
||||
input->type().ToString());
|
||||
|
@ -469,7 +471,7 @@ Status ComplexNorm(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor>
|
|||
|
||||
template <typename T>
|
||||
float sgn(T val) {
|
||||
return (static_cast<T>(0) < val) - (val < static_cast<T>(0));
|
||||
return static_cast<float>(static_cast<T>(0) < val) - static_cast<float>(val < static_cast<T>(0));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
|
|
@ -277,7 +277,7 @@ Status LFilter(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *ou
|
|||
/// \param phase_advance: Expected phase advance in each bin.
|
||||
/// \param output: Tensor after stretch in time domain.
|
||||
/// \return Status code.
|
||||
Status TimeStretch(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output, float rate, float hop_length,
|
||||
Status TimeStretch(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output, float rate, float hop_length,
|
||||
float n_freq);
|
||||
|
||||
/// \brief Apply a mask along axis.
|
||||
|
|
|
@ -29,7 +29,7 @@ namespace dataset {
|
|||
|
||||
// Constructor for DIV2KNode
|
||||
DIV2KNode::DIV2KNode(const std::string &dataset_dir, const std::string &usage, const std::string &downgrade,
|
||||
int32_t scale, bool decode, std::shared_ptr<SamplerObj> sampler,
|
||||
int32_t scale, bool decode, const std::shared_ptr<SamplerObj> &sampler,
|
||||
std::shared_ptr<DatasetCache> cache)
|
||||
: MappableSourceNode(std::move(cache)),
|
||||
dataset_dir_(dataset_dir),
|
||||
|
@ -109,7 +109,7 @@ Status DIV2KNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops)
|
|||
|
||||
// Get the shard id of node
|
||||
Status DIV2KNode::GetShardId(int32_t *shard_id) {
|
||||
*shard_id = sampler_->ShardId();
|
||||
*shard_id = static_cast<int32_t>(sampler_->ShardId());
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
|
|
|
@ -30,7 +30,7 @@ class DIV2KNode : public MappableSourceNode {
|
|||
public:
|
||||
/// \brief Constructor.
|
||||
DIV2KNode(const std::string &dataset_dir, const std::string &usage, const std::string &downgrade, int32_t scale,
|
||||
bool decode, std::shared_ptr<SamplerObj> sampler, std::shared_ptr<DatasetCache> cache);
|
||||
bool decode, const std::shared_ptr<SamplerObj> &sampler, std::shared_ptr<DatasetCache> cache);
|
||||
|
||||
/// \brief Destructor.
|
||||
~DIV2KNode() = default;
|
||||
|
@ -99,8 +99,8 @@ class DIV2KNode : public MappableSourceNode {
|
|||
private:
|
||||
std::string dataset_dir_;
|
||||
std::string usage_;
|
||||
int32_t scale_;
|
||||
std::string downgrade_;
|
||||
int32_t scale_;
|
||||
bool decode_;
|
||||
std::shared_ptr<SamplerObj> sampler_;
|
||||
};
|
||||
|
|
|
@ -91,7 +91,7 @@ APP_ERROR ResourceManager::InitResource(ResourceInfo &resourceInfo) {
|
|||
MS_LOG(ERROR) << "Failed to init acl.";
|
||||
return APP_ERR_COMM_FAILURE;
|
||||
}
|
||||
std::copy(resourceInfo.deviceIds.begin(), resourceInfo.deviceIds.end(), std::back_inserter(deviceIds_));
|
||||
(void)std::copy(resourceInfo.deviceIds.begin(), resourceInfo.deviceIds.end(), std::back_inserter(deviceIds_));
|
||||
MS_LOG(INFO) << "Initialized acl successfully.";
|
||||
// Open device and create context for each chip, note: it create one context for each chip
|
||||
for (size_t i = 0; i < deviceIds_.size(); i++) {
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
#include <algorithm>
|
||||
#include <typeinfo>
|
||||
#include <utility>
|
||||
|
||||
#include "minddata/dataset/kernels/ir/data/transforms_ir.h"
|
||||
|
||||
|
|
|
@ -143,7 +143,7 @@ Status ShardSample::Execute(ShardTaskList &tasks) {
|
|||
no_of_samples_ = std::min(no_of_samples_, total_no);
|
||||
taking = no_of_samples_ - no_of_samples_ % no_of_categories;
|
||||
} else if (sampler_type_ == kSubsetRandomSampler || sampler_type_ == kSubsetSampler) {
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(indices_.size() <= static_cast<size_t>(total_no),
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(static_cast<int>(indices_.size()) <= total_no,
|
||||
"Invalid input, indices size: " + std::to_string(indices_.size()) +
|
||||
" need to be less than dataset size: " + std::to_string(total_no) + ".");
|
||||
} else { // constructor TopPercent
|
||||
|
|
Loading…
Reference in New Issue