intitial commit

fix ci

fix ci
This commit is contained in:
Peilin Wang 2021-02-12 16:46:57 -05:00
parent 8d936a6589
commit ce26d2e987
8 changed files with 324 additions and 143 deletions

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2020 Huawei Technologies Co., Ltd * Copyright 2020-2021 Huawei Technologies Co., Ltd
* *
* Licensed under the Apache License, Version 2.0 (the "License"); * Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License. * you may not use this file except in compliance with the License.
@ -222,6 +222,8 @@ void ElewiseCmp(const int &nums, enum BroadcastOpType op, const T *x0, const T *
} }
} }
template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const double *x0, const double *x1, bool *y,
cudaStream_t stream);
template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, bool *y, template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, bool *y,
cudaStream_t stream); cudaStream_t stream);
template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, bool *y, template void ElewiseCmp(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, bool *y,
@ -292,6 +294,8 @@ void ElewiseArith(const int &nums, enum BroadcastOpType op, const half *x0, cons
} }
} }
template void ElewiseArith(const int &nums, enum BroadcastOpType op, const double *x0, const double *x1, double *y,
cudaStream_t stream);
template void ElewiseArith(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, float *y, template void ElewiseArith(const int &nums, enum BroadcastOpType op, const float *x0, const float *x1, float *y,
cudaStream_t stream); cudaStream_t stream);
template void ElewiseArith(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, half *y, template void ElewiseArith(const int &nums, enum BroadcastOpType op, const half *x0, const half *x1, half *y,
@ -372,6 +376,9 @@ void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t>
} }
} }
template void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims,
const std::vector<size_t> &y_dims, enum BroadcastOpType op, const double *x0,
const double *x1, bool *y, cudaStream_t stream);
template void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims, template void BroadcastCmp(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims,
const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0, const float *x1, const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0, const float *x1,
bool *y, cudaStream_t stream); bool *y, cudaStream_t stream);
@ -501,6 +508,9 @@ void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t
} }
} }
template void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims,
const std::vector<size_t> &y_dims, enum BroadcastOpType op, const double *x0,
const double *x1, double *y, cudaStream_t stream);
template void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims, template void BroadcastArith(const std::vector<size_t> &x0_dims, const std::vector<size_t> &x1_dims,
const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0, const std::vector<size_t> &y_dims, enum BroadcastOpType op, const float *x0,
const float *x1, float *y, cudaStream_t stream); const float *x1, float *y, cudaStream_t stream);

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2020 Huawei Technologies Co., Ltd * Copyright 2020-2021 Huawei Technologies Co., Ltd
* *
* Licensed under the Apache License, Version 2.0 (the "License"); * Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License. * you may not use this file except in compliance with the License.
@ -18,6 +18,20 @@
namespace mindspore { namespace mindspore {
namespace kernel { namespace kernel {
// fp64
MS_REG_GPU_KERNEL_ONE(
Add, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
BroadcastOpGpuKernel, double)
MS_REG_GPU_KERNEL_ONE(
Sub, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
BroadcastOpGpuKernel, double)
MS_REG_GPU_KERNEL_ONE(
Mul, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
BroadcastOpGpuKernel, double)
MS_REG_GPU_KERNEL_ONE(
Div, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
BroadcastOpGpuKernel, double)
// fp32 // fp32
MS_REG_GPU_KERNEL_ONE( MS_REG_GPU_KERNEL_ONE(
Greater, Greater,

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2020 Huawei Technologies Co., Ltd * Copyright 2020-2021 Huawei Technologies Co., Ltd
* *
* Licensed under the Apache License, Version 2.0 (the "License"); * Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License. * you may not use this file except in compliance with the License.
@ -31,6 +31,10 @@ MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
GpuConvertToDynamicShapeGpuKernel, float) GpuConvertToDynamicShapeGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape,
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
GpuConvertToDynamicShapeGpuKernel, double)
MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape, MS_REG_GPU_KERNEL_ONE(GpuConvertToDynamicShape,
KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
GpuConvertToDynamicShapeGpuKernel, int8_t) GpuConvertToDynamicShapeGpuKernel, int8_t)

View File

@ -1,4 +1,4 @@
# Copyright 2019 Huawei Technologies Co., Ltd # Copyright 2019-2021 Huawei Technologies Co., Ltd
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
@ -25,34 +25,32 @@ from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner from mindspore.ops.operations import _inner_ops as inner
context.set_context(device_target='GPU') class AddNet(nn.Cell):
def __init__(self, nptype):
super(AddNet, self).__init__()
class TensroAdd(nn.Cell):
def __init__(self):
super(TensroAdd, self).__init__()
self.add = P.Add() self.add = P.Add()
np.random.seed(0)
self.x = Parameter(initializer( self.x = Parameter(initializer(
Tensor(np.random.randn(2, 0).astype(np.float32)), [2, 0]), name='x') Tensor(np.random.randn(2, 0).astype(nptype)), [2, 0]), name='x')
self.y = Parameter(initializer( self.y = Parameter(initializer(
Tensor(np.random.randn(2, 1).astype(np.float32)), [2, 1]), name='y') Tensor(np.random.randn(2, 1).astype(nptype)), [2, 1]), name='y')
self.x1 = Parameter(initializer( self.x1 = Parameter(initializer(
Tensor(np.arange(3).reshape(3).astype(np.float32)), [3]), name='x1') Tensor(np.arange(3).reshape(3).astype(nptype)), [3]), name='x1')
self.y1 = Parameter(initializer( self.y1 = Parameter(initializer(
Tensor(np.array([2]).astype(np.float32)), [1]), name='y1') Tensor(np.array([2]).astype(nptype)), [1]), name='y1')
self.x2 = Parameter(initializer( self.x2 = Parameter(initializer(
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='x2') Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='x2')
self.y2 = Parameter(initializer( self.y2 = Parameter(initializer(
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y2') Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='y2')
self.x3 = Parameter(initializer( self.x3 = Parameter(initializer(
Tensor(np.arange(1 * 1 * 3 * 3).reshape(1, 1, 3, 3).astype(np.float32)), [1, 1, 3, 3]), name='x3') Tensor(np.arange(1 * 1 * 3 * 3).reshape(1, 1, 3, 3).astype(nptype)), [1, 1, 3, 3]), name='x3')
self.y3 = Parameter(initializer( self.y3 = Parameter(initializer(
Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y3') Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype)), [3, 3, 3, 3]), name='y3')
@ms_function @ms_function
def construct(self): def construct(self):
@ -61,14 +59,13 @@ class TensroAdd(nn.Cell):
self.add(self.x3, self.y3)) self.add(self.x3, self.y3))
@pytest.mark.level0 def add(nptype):
@pytest.mark.platform_x86_gpu_training context.set_context(device_target='GPU')
@pytest.mark.env_onecard
def test_TensorAdd(): add_net = AddNet(nptype)
add = TensroAdd() output = add_net()
output = add()
expect0 = np.array([]) expect0 = np.array([])
expect1 = np.array([2, 3, 4]) expect1 = np.array([2, 3, 4]).astype(nptype)
expect2 = np.array( expect2 = np.array(
[[[[0., 2., 4.], [[[[0., 2., 4.],
[6., 8., 10.], [6., 8., 10.],
@ -96,7 +93,7 @@ def test_TensorAdd():
[138., 140., 142.]], [138., 140., 142.]],
[[144., 146., 148.], [[144., 146., 148.],
[150., 152., 154.], [150., 152., 154.],
[156., 158., 160.]]]]) [156., 158., 160.]]]]).astype(nptype)
expect3 = np.array( expect3 = np.array(
[[[[0., 2., 4.], [[[[0., 2., 4.],
[6., 8., 10.], [6., 8., 10.],
@ -124,13 +121,42 @@ def test_TensorAdd():
[75., 77., 79.]], [75., 77., 79.]],
[[72., 74., 76.], [[72., 74., 76.],
[78., 80., 82.], [78., 80., 82.],
[84., 86., 88.]]]] [84., 86., 88.]]]]).astype(nptype)
)
assert (output[0].asnumpy() == expect0).all() assert (output[0].asnumpy() == expect0).all()
assert (output[1].asnumpy() == expect1).all() assert (output[1].asnumpy() == expect1).all()
assert (output[2].asnumpy() == expect2).all() assert (output[2].asnumpy() == expect2).all()
assert (output[3].asnumpy() == expect3).all() assert (output[3].asnumpy() == expect3).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_float64():
add(np.float64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_float32():
add(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_float16():
add(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_int64():
add(np.int64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_int32():
add(np.int32)
class Tensoradd_d(nn.Cell): class Tensoradd_d(nn.Cell):
def __init__(self): def __init__(self):
super(Tensoradd_d, self).__init__() super(Tensoradd_d, self).__init__()
@ -142,18 +168,16 @@ class Tensoradd_d(nn.Cell):
y = self.test_dynamic(y) y = self.test_dynamic(y)
return self.add(x, y) return self.add(x, y)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training def add_dynamic(nptype):
@pytest.mark.env_onecard
def test_TensorAdd_dynamic():
context.set_context(device_target='GPU', mode=context.GRAPH_MODE) context.set_context(device_target='GPU', mode=context.GRAPH_MODE)
net = Tensoradd_d() net = Tensoradd_d()
x1 = Tensor(np.arange(3).reshape(3).astype(np.float32)) x1 = Tensor(np.arange(3).reshape(3).astype(nptype))
y1 = Tensor(np.array([2]).astype(np.float32)) y1 = Tensor(np.array([2]).astype(nptype))
x2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)) x2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype))
y2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)) y2 = Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(nptype))
expect1 = np.array([2, 3, 4]) expect1 = np.array([2, 3, 4])
expect2 = np.array( expect2 = np.array(
@ -189,3 +213,33 @@ def test_TensorAdd_dynamic():
output2 = net(x2, y2) output2 = net(x2, y2)
assert (output1.asnumpy() == expect1).all() assert (output1.asnumpy() == expect1).all()
assert (output2.asnumpy() == expect2).all() assert (output2.asnumpy() == expect2).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_dynamic_float64():
add_dynamic(np.float64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_dynamic_float32():
add_dynamic(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_dynamic_float16():
add_dynamic(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_dynamic_int64():
add_dynamic(np.int64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_add_dynamic_int32():
add_dynamic(np.int32)

View File

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd # Copyright 2020-2021 Huawei Technologies Co., Ltd
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
@ -29,24 +29,17 @@ class NetDiv(nn.Cell):
def construct(self, x, y): def construct(self, x, y):
return self.div(x, y) return self.div(x, y)
@pytest.mark.level0 def div(nptype):
@pytest.mark.platform_x86_gpu_training x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
@pytest.mark.env_onecard y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
def test_div(): x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(nptype)
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(nptype)
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(nptype)
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32) x3_np = np.random.randint(1, 5, 1).astype(nptype)
x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32) y3_np = np.random.randint(1, 5, 1).astype(nptype)
y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32) x4_np = np.array(78).astype(nptype)
x3_np = np.random.randint(1, 5, 1).astype(np.float32) y4_np = np.array(37.5).astype(nptype)
y3_np = np.random.randint(1, 5, 1).astype(np.float32)
x4_np = np.array(768).astype(np.float32)
y4_np = np.array(3072.5).astype(np.float32)
x5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16)
y5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16)
x6_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.int32)
y6_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.int32)
x0 = Tensor(x0_np) x0 = Tensor(x0_np)
y0 = Tensor(y0_np) y0 = Tensor(y0_np)
@ -58,28 +51,24 @@ def test_div():
y3 = Tensor(y3_np) y3 = Tensor(y3_np)
x4 = Tensor(x4_np) x4 = Tensor(x4_np)
y4 = Tensor(y4_np) y4 = Tensor(y4_np)
x5 = Tensor(x5_np)
y5 = Tensor(y5_np)
x6 = Tensor(x6_np)
y6 = Tensor(y6_np)
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
div = NetDiv() div_net = NetDiv()
output0 = div(x0, y0) output0 = div_net(x0, y0)
expect0 = np.divide(x0_np, y0_np) expect0 = np.divide(x0_np, y0_np)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert output0.shape == expect0.shape assert output0.shape == expect0.shape
output1 = div(x1, y1) output1 = div_net(x1, y1)
expect1 = np.divide(x1_np, y1_np) expect1 = np.divide(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert output1.shape == expect1.shape assert output1.shape == expect1.shape
output2 = div(x2, y2) output2 = div_net(x2, y2)
expect2 = np.divide(x2_np, y2_np) expect2 = np.divide(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
@ -87,30 +76,46 @@ def test_div():
assert output2.shape == expect2.shape assert output2.shape == expect2.shape
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
output3 = div(x3, y3) output3 = div_net(x3, y3)
expect3 = np.divide(x3_np, y3_np) expect3 = np.divide(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert output3.shape == expect3.shape assert output3.shape == expect3.shape
output4 = div(x4, y4) output4 = div_net(x4, y4)
expect4 = np.divide(x4_np, y4_np) expect4 = np.divide(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert output4.shape == expect4.shape assert output4.shape == expect4.shape
output5 = div(x5, y5) @pytest.mark.level0
expect5 = np.divide(x5_np, y5_np) @pytest.mark.platform_x86_gpu_training
diff5 = output5.asnumpy() - expect5 @pytest.mark.env_onecard
error5 = np.ones(shape=expect5.shape) * 1.0e-5 def test_div_float64():
assert np.all(diff5 < error5) div(np.float64)
assert output5.shape == expect5.shape
output6 = div(x6, y6) @pytest.mark.level0
expect6 = np.divide(x6_np, y6_np) @pytest.mark.platform_x86_gpu_training
diff6 = output6.asnumpy() - expect6 @pytest.mark.env_onecard
error6 = np.ones(shape=expect6.shape) * 1.0e-5 def test_div_float32():
assert np.all(diff6 < error6) div(np.float32)
assert output6.shape == expect6.shape
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_div_float16():
div(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_div_int64():
div(np.int64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_div_int32():
div(np.int32)

View File

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd # Copyright 2020-2021 Huawei Technologies Co., Ltd
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
@ -63,6 +63,12 @@ def gpu_convert_to_dynamic_shape_float(dtype):
np.random.seed(0) np.random.seed(0)
finfo = np.finfo(dtype) finfo = np.finfo(dtype)
# np.random.uniform will overflow if we use min/max for float64, so we use
# the finfo for float32, but still test the operator with float64 input.
if dtype == np.float64:
finfo = np.finfo(np.float32)
float_min = finfo.min float_min = finfo.min
float_max = finfo.max float_max = finfo.max
x = np.random.uniform(low=float_min, high=float_max, size=12).astype(dtype) x = np.random.uniform(low=float_min, high=float_max, size=12).astype(dtype)
@ -103,6 +109,12 @@ def test_gpu_convert_to_dynamic_shape_float16():
def test_gpu_convert_to_dynamic_shape_float32(): def test_gpu_convert_to_dynamic_shape_float32():
gpu_convert_to_dynamic_shape_float(np.float32) gpu_convert_to_dynamic_shape_float(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_gpu_convert_to_dynamic_shape_float64():
gpu_convert_to_dynamic_shape_float(np.float64)
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard

View File

@ -1,4 +1,4 @@
# Copyright 2019 Huawei Technologies Co., Ltd # Copyright 2019-2021 Huawei Technologies Co., Ltd
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
@ -31,20 +31,17 @@ class NetMul(nn.Cell):
return self.mul(x, y) return self.mul(x, y)
@pytest.mark.level0 def mul(nptype):
@pytest.mark.platform_x86_gpu_training x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
@pytest.mark.env_onecard y0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
def test_mul(): x1_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) y1_np = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(nptype)
y0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype)
x1_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
y1_np = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(np.float32) x3_np = np.random.uniform(-2, 2, 1).astype(nptype)
x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32) y3_np = np.random.uniform(-2, 2, 1).astype(nptype)
y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) x4_np = np.array(78).astype(nptype)
x3_np = np.random.uniform(-2, 2, 1).astype(np.float32) y4_np = np.array(37.5).astype(nptype)
y3_np = np.random.uniform(-2, 2, 1).astype(np.float32)
x4_np = np.array(768).astype(np.float32)
y4_np = np.array(3072.5).astype(np.float32)
x0 = Tensor(x0_np) x0 = Tensor(x0_np)
y0 = Tensor(y0_np) y0 = Tensor(y0_np)
@ -58,36 +55,36 @@ def test_mul():
y4 = Tensor(y4_np) y4 = Tensor(y4_np)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
mul = NetMul() mul_net = NetMul()
output0 = mul(x0, y0) output0 = mul_net(x0, y0)
expect0 = np.multiply(x0_np, y0_np) expect0 = np.multiply(x0_np, y0_np)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert output0.shape == expect0.shape assert output0.shape == expect0.shape
output1 = mul(x1, y1) output1 = mul_net(x1, y1)
expect1 = np.multiply(x1_np, y1_np) expect1 = np.multiply(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert output1.shape == expect1.shape assert output1.shape == expect1.shape
output2 = mul(x2, y2) output2 = mul_net(x2, y2)
expect2 = np.multiply(x2_np, y2_np) expect2 = np.multiply(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert output2.shape == expect2.shape assert output2.shape == expect2.shape
output3 = mul(x3, y3) output3 = mul_net(x3, y3)
expect3 = np.multiply(x3_np, y3_np) expect3 = np.multiply(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert output3.shape == expect3.shape assert output3.shape == expect3.shape
output4 = mul(x4, y4) output4 = mul_net(x4, y4)
expect4 = np.multiply(x4_np, y4_np) expect4 = np.multiply(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
@ -95,42 +92,72 @@ def test_mul():
assert output4.shape == expect4.shape assert output4.shape == expect4.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
mul = NetMul() mul_net = NetMul()
output0 = mul(x0, y0) output0 = mul_net(x0, y0)
expect0 = np.multiply(x0_np, y0_np) expect0 = np.multiply(x0_np, y0_np)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
error0 = np.ones(shape=expect0.shape) * 1.0e-5 error0 = np.ones(shape=expect0.shape) * 1.0e-5
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert output0.shape == expect0.shape assert output0.shape == expect0.shape
output1 = mul(x1, y1) output1 = mul_net(x1, y1)
expect1 = np.multiply(x1_np, y1_np) expect1 = np.multiply(x1_np, y1_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
error1 = np.ones(shape=expect1.shape) * 1.0e-5 error1 = np.ones(shape=expect1.shape) * 1.0e-5
assert np.all(diff1 < error1) assert np.all(diff1 < error1)
assert output1.shape == expect1.shape assert output1.shape == expect1.shape
output2 = mul(x2, y2) output2 = mul_net(x2, y2)
expect2 = np.multiply(x2_np, y2_np) expect2 = np.multiply(x2_np, y2_np)
diff2 = output2.asnumpy() - expect2 diff2 = output2.asnumpy() - expect2
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert output2.shape == expect2.shape assert output2.shape == expect2.shape
output3 = mul(x3, y3) output3 = mul_net(x3, y3)
expect3 = np.multiply(x3_np, y3_np) expect3 = np.multiply(x3_np, y3_np)
diff3 = output3.asnumpy() - expect3 diff3 = output3.asnumpy() - expect3
error3 = np.ones(shape=expect3.shape) * 1.0e-5 error3 = np.ones(shape=expect3.shape) * 1.0e-5
assert np.all(diff3 < error3) assert np.all(diff3 < error3)
assert output3.shape == expect3.shape assert output3.shape == expect3.shape
output4 = mul(x4, y4) output4 = mul_net(x4, y4)
expect4 = np.multiply(x4_np, y4_np) expect4 = np.multiply(x4_np, y4_np)
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert output4.shape == expect4.shape assert output4.shape == expect4.shape
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_float64():
mul(np.float64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_float32():
mul(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_float16():
mul(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_int64():
mul(np.int64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_int32():
mul(np.int32)
class NetMul_dynamic(nn.Cell): class NetMul_dynamic(nn.Cell):
def __init__(self): def __init__(self):
super(NetMul_dynamic, self).__init__() super(NetMul_dynamic, self).__init__()
@ -143,14 +170,12 @@ class NetMul_dynamic(nn.Cell):
out = self.mul(x, y) out = self.mul(x, y)
return out return out
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training def mul_dynamic(nptype):
@pytest.mark.env_onecard x1_np = np.array([78]).astype(nptype)
def test_mul_dynamic(): y1_np = np.array([37.5]).astype(nptype)
x1_np = np.array([768]).astype(np.float32) x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype)
y1_np = np.array([3072.5]).astype(np.float32) y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
x2_np = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32)
y2_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
x1 = Tensor(x1_np) x1 = Tensor(x1_np)
y1 = Tensor(y1_np) y1 = Tensor(y1_np)
@ -159,10 +184,10 @@ def test_mul_dynamic():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
mul = NetMul_dynamic() mul_net = NetMul_dynamic()
output1 = mul(x1, y1) output1 = mul_net(x1, y1)
output2 = mul(x2, y2) output2 = mul_net(x2, y2)
expect1 = np.multiply(x1_np, y1_np) expect1 = np.multiply(x1_np, y1_np)
expect2 = np.multiply(x2_np, y2_np) expect2 = np.multiply(x2_np, y2_np)
diff1 = output1.asnumpy() - expect1 diff1 = output1.asnumpy() - expect1
@ -173,3 +198,33 @@ def test_mul_dynamic():
error2 = np.ones(shape=expect2.shape) * 1.0e-5 error2 = np.ones(shape=expect2.shape) * 1.0e-5
assert np.all(diff2 < error2) assert np.all(diff2 < error2)
assert output2.shape == expect2.shape assert output2.shape == expect2.shape
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_dynamic_float64():
mul_dynamic(np.float64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_dynamic_float32():
mul_dynamic(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_dynamic_float16():
mul_dynamic(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_dynamic_int64():
mul_dynamic(np.int64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_mul_dynamic_int32():
mul_dynamic(np.int32)

View File

@ -1,4 +1,4 @@
# Copyright 2019 Huawei Technologies Co., Ltd # Copyright 2019-2021 Huawei Technologies Co., Ltd
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
@ -31,20 +31,17 @@ class Net(nn.Cell):
return self.sub(x, y) return self.sub(x, y)
@pytest.mark.level0 def sub(nptype):
@pytest.mark.platform_x86_gpu_training np_x0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
@pytest.mark.env_onecard np_y0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
def test_Sub(): np_x1 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
np_x0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) np_y1 = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(nptype)
np_y0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) np_x2 = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype)
np_x1 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) np_y2 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype)
np_y1 = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(np.float32) np_x3 = np.random.uniform(-2, 2, 1).astype(nptype)
np_x2 = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(np.float32) np_y3 = np.random.uniform(-2, 2, 1).astype(nptype)
np_y2 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) np_x4 = np.array(768).astype(nptype)
np_x3 = np.random.uniform(-2, 2, 1).astype(np.float32) np_y4 = np.array(3072.5).astype(nptype)
np_y3 = np.random.uniform(-2, 2, 1).astype(np.float32)
np_x4 = np.array(768).astype(np.float32)
np_y4 = np.array(3072.5).astype(np.float32)
x0 = Tensor(np_x0) x0 = Tensor(np_x0)
y0 = Tensor(np_y0) y0 = Tensor(np_y0)
x1 = Tensor(np_x1) x1 = Tensor(np_x1)
@ -68,12 +65,12 @@ def test_Sub():
error4 = np.ones(shape=expect4.shape) * 1.0e-5 error4 = np.ones(shape=expect4.shape) * 1.0e-5
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
sub = Net() sub_net = Net()
output0 = sub(x0, y0) output0 = sub_net(x0, y0)
output1 = sub(x1, y1) output1 = sub_net(x1, y1)
output2 = sub(x2, y2) output2 = sub_net(x2, y2)
output3 = sub(x3, y3) output3 = sub_net(x3, y3)
output4 = sub(x4, y4) output4 = sub_net(x4, y4)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert output0.shape == expect0.shape assert output0.shape == expect0.shape
@ -91,12 +88,12 @@ def test_Sub():
assert output4.shape == expect4.shape assert output4.shape == expect4.shape
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
sub = Net() sub_net = Net()
output0 = sub(x0, y0) output0 = sub_net(x0, y0)
output1 = sub(x1, y1) output1 = sub_net(x1, y1)
output2 = sub(x2, y2) output2 = sub_net(x2, y2)
output3 = sub(x3, y3) output3 = sub_net(x3, y3)
output4 = sub(x4, y4) output4 = sub_net(x4, y4)
diff0 = output0.asnumpy() - expect0 diff0 = output0.asnumpy() - expect0
assert np.all(diff0 < error0) assert np.all(diff0 < error0)
assert output0.shape == expect0.shape assert output0.shape == expect0.shape
@ -112,3 +109,33 @@ def test_Sub():
diff4 = output4.asnumpy() - expect4 diff4 = output4.asnumpy() - expect4
assert np.all(diff4 < error4) assert np.all(diff4 < error4)
assert output4.shape == expect4.shape assert output4.shape == expect4.shape
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sub_float64():
sub(np.float64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sub_float32():
sub(np.float32)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sub_float16():
sub(np.float16)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sub_int64():
sub(np.int64)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sub_int32():
sub(np.int32)