forked from mindspore-Ecosystem/mindspore
added Gumbel distribution
This commit is contained in:
parent
40b4844b76
commit
ce170b2241
|
@ -17,7 +17,7 @@ from mindspore import context
|
|||
from mindspore.nn.cell import Cell
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore._checkparam import Validator as validator
|
||||
from ..distribution._utils.utils import CheckTensor
|
||||
from ..distribution._utils.utils import CheckTensor, cast_to_tensor
|
||||
from ..distribution import Distribution
|
||||
from ..distribution import TransformedDistribution
|
||||
|
||||
|
@ -66,6 +66,8 @@ class Bijector(Cell):
|
|||
# ops needed for the base class
|
||||
self.cast_base = P.Cast()
|
||||
self.dtype_base = P.DType()
|
||||
self.shape_base = P.Shape()
|
||||
self.fill_base = P.Fill()
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
|
@ -87,6 +89,36 @@ class Bijector(Cell):
|
|||
def is_injective(self):
|
||||
return self._is_injective
|
||||
|
||||
def _add_parameter(self, value, name):
|
||||
"""
|
||||
Cast `value` to a tensor and add it to `self.default_parameters`.
|
||||
Add `name` into and `self.parameter_names`.
|
||||
"""
|
||||
# initialize the attributes if they do not exist yet
|
||||
if not hasattr(self, 'default_parameters'):
|
||||
self.default_parameters = []
|
||||
self.parameter_names = []
|
||||
# cast value to a tensor if it is not None
|
||||
value_t = None if value is None else cast_to_tensor(value, self.parameter_type)
|
||||
self.default_parameters += [value_t,]
|
||||
self.parameter_names += [name,]
|
||||
return value_t
|
||||
|
||||
def _calc_event_shape(self):
|
||||
"""
|
||||
Calculate event_shape based on parameters.
|
||||
"""
|
||||
broadcast_shape = None
|
||||
for param in self.default_parameters:
|
||||
if broadcast_shape is None:
|
||||
broadcast_shape = self.shape_base(param)
|
||||
broadcast_shape_tensor = self.fill_base(self.parameter_type, broadcast_shape, 0.0)
|
||||
else:
|
||||
broadcast_shape = self.shape_base(param + broadcast_shape_tensor)
|
||||
broadcast_shape_tensor = self.fill_base(self.parameter_type, broadcast_shape, 0.0)
|
||||
return broadcast_shape
|
||||
|
||||
|
||||
def _check_value(self, value, name):
|
||||
"""
|
||||
Check availability of `value` as a Tensor.
|
||||
|
|
|
@ -14,7 +14,9 @@
|
|||
# ============================================================================
|
||||
"""GumbelCDF Bijector"""
|
||||
from mindspore.common import dtype as mstype
|
||||
from ..distribution._utils.utils import cast_to_tensor, check_greater_zero, set_param_type
|
||||
from mindspore._checkparam import Validator
|
||||
from mindspore.ops import operations as P
|
||||
from ..distribution._utils.utils import check_greater_zero, set_param_type
|
||||
from ..distribution._utils.custom_ops import exp_generic, log_generic
|
||||
from .bijector import Bijector
|
||||
|
||||
|
@ -33,6 +35,7 @@ class GumbelCDF(Bijector):
|
|||
Args:
|
||||
loc (int, float, list, numpy.ndarray, Tensor): The location. Default: 0..
|
||||
scale (int, float, list, numpy.ndarray, Tensor): The scale. Default: 1.0.
|
||||
dtype (mindspore.dtype): Type of the distribution which the bijector operates on. Default: float32.
|
||||
name (str): The name of the Bijector. Default: 'Gumbel_CDF'.
|
||||
|
||||
Examples:
|
||||
|
@ -58,17 +61,24 @@ class GumbelCDF(Bijector):
|
|||
def __init__(self,
|
||||
loc=0.0,
|
||||
scale=1.0,
|
||||
dtype=mstype.float32,
|
||||
name='GumbelCDF'):
|
||||
"""
|
||||
Constructor of GumbelCDF Bijector.
|
||||
"""
|
||||
param = dict(locals())
|
||||
parameter_type = set_param_type({'loc': loc, "scale": scale}, mstype.float32)
|
||||
super(GumbelCDF, self).__init__(name=name, dtype=parameter_type, param=param)
|
||||
self._loc = cast_to_tensor(loc, parameter_type)
|
||||
self._scale = cast_to_tensor(scale, parameter_type)
|
||||
check_greater_zero(self._scale, "scale")
|
||||
valid_dtype = mstype.float_type + mstype.int_type + mstype.uint_type
|
||||
Validator.check_type(type(self).__name__, dtype, valid_dtype)
|
||||
parameter_type = set_param_type({'loc': loc, "scale": scale}, dtype)
|
||||
super(GumbelCDF, self).__init__(name=name, dtype=dtype, param=param)
|
||||
|
||||
self._parameter_type = parameter_type
|
||||
self._loc = self._add_parameter(loc, 'loc')
|
||||
self._scale = self._add_parameter(scale, 'scale')
|
||||
check_greater_zero(self._scale, "scale")
|
||||
self._event_shape = self._calc_event_shape()
|
||||
|
||||
self.cast = P.Cast()
|
||||
self.exp = exp_generic
|
||||
self.log = log_generic
|
||||
|
||||
|
@ -81,6 +91,14 @@ class GumbelCDF(Bijector):
|
|||
def scale(self):
|
||||
return self._scale
|
||||
|
||||
@property
|
||||
def event_shape(self):
|
||||
return self._event_shape
|
||||
|
||||
@property
|
||||
def parameter_type(self):
|
||||
return self._parameter_type
|
||||
|
||||
def extend_repr(self):
|
||||
str_info = f'loc = {self.loc}, scale = {self.scale}'
|
||||
return str_info
|
||||
|
@ -90,18 +108,22 @@ class GumbelCDF(Bijector):
|
|||
|
||||
def _forward(self, x):
|
||||
x = self._check_value(x, 'value')
|
||||
x = self.cast(x, self.parameter_type)
|
||||
z = (x - self.loc) / self.scale
|
||||
return self.exp(-self.exp(-z))
|
||||
|
||||
def _inverse(self, y):
|
||||
y = self._check_value(y, 'value')
|
||||
y = self.cast(y, self.parameter_type)
|
||||
return self.loc - self.scale * self.log(-self.log(y))
|
||||
|
||||
def _forward_log_jacobian(self, x):
|
||||
x = self._check_value(x, 'value')
|
||||
x = self.cast(x, self.parameter_type)
|
||||
z = (x - self.loc) / self.scale
|
||||
return -z - self.exp(-z) - self.log(self.scale)
|
||||
|
||||
def _inverse_log_jacobian(self, y):
|
||||
y = self._check_value(y, 'value')
|
||||
return self.log(self.scale / (-y * self.log(y)))
|
||||
y = self.cast(y, self.parameter_type)
|
||||
return self.log(self.scale / (-1. * y * self.log(y)))
|
||||
|
|
|
@ -57,11 +57,19 @@ class Invert(Bijector):
|
|||
name=name,
|
||||
param=param)
|
||||
self._bijector = bijector
|
||||
if hasattr(self._bijector, 'event_shape'):
|
||||
self._event_shape = self.bijector.event_shape
|
||||
else:
|
||||
self._event_shape = ()
|
||||
|
||||
@property
|
||||
def bijector(self):
|
||||
return self._bijector
|
||||
|
||||
@property
|
||||
def event_shape(self):
|
||||
return self._event_shape
|
||||
|
||||
def inverse(self, y):
|
||||
return self.bijector("forward", y)
|
||||
|
||||
|
|
|
@ -26,6 +26,7 @@ from .geometric import Geometric
|
|||
from .categorical import Categorical
|
||||
from .log_normal import LogNormal
|
||||
from .logistic import Logistic
|
||||
from .gumbel import Gumbel
|
||||
|
||||
__all__ = ['Distribution',
|
||||
'TransformedDistribution',
|
||||
|
@ -37,4 +38,5 @@ __all__ = ['Distribution',
|
|||
'Geometric',
|
||||
'LogNormal',
|
||||
'Logistic',
|
||||
'Gumbel',
|
||||
]
|
||||
|
|
|
@ -132,6 +132,10 @@ class Distribution(Cell):
|
|||
def broadcast_shape(self):
|
||||
return self._broadcast_shape
|
||||
|
||||
def _reset_parameters(self):
|
||||
self.default_parameters = []
|
||||
self.parameter_names = []
|
||||
|
||||
def _add_parameter(self, value, name):
|
||||
"""
|
||||
Cast `value` to a tensor and add it to `self.default_parameters`.
|
||||
|
|
|
@ -0,0 +1,249 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Gumbel Distribution"""
|
||||
import numpy as np
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore._checkparam import Validator
|
||||
from mindspore.common import dtype as mstype
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.bijector as msb
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from .transformed_distribution import TransformedDistribution
|
||||
from ._utils.utils import check_distribution_name, raise_not_implemented_util
|
||||
from ._utils.custom_ops import exp_generic, expm1_generic, log_generic
|
||||
|
||||
class Gumbel(TransformedDistribution):
|
||||
"""
|
||||
Gumbel distribution.
|
||||
|
||||
Args:
|
||||
loc (int, float, list, numpy.ndarray, Tensor, Parameter): The location of Gumbel distribution.
|
||||
scale (int, float, list, numpy.ndarray, Tensor, Parameter): The scale of Gumbel distribution.
|
||||
seed (int): the seed used in sampling. The global seed is used if it is None. Default: None.
|
||||
dtype (mindspore.dtype): type of the distribution. Default: mstype.float32.
|
||||
name (str): the name of the distribution. Default: 'Gumbel'.
|
||||
|
||||
Note:
|
||||
`scale` must be greater than zero.
|
||||
`dist_spec_args` are `loc` and `scale`.
|
||||
`dtype` must be a float type because Gumbel distributions are continuous.
|
||||
|
||||
Examples:
|
||||
>>> # To initialize a Gumbel distribution of `loc` 3.0 and `scale` 4.0.
|
||||
>>> gum = msd.Gumbel(3.0, 4.0, dtype=mstype.float32)
|
||||
>>>
|
||||
>>> # The following creates two independent Gumbel distributions.
|
||||
>>> gum = msd.Gumbel([3.0, 3.0], [4.0, 4.0], dtype=mstype.float32)
|
||||
>>>
|
||||
>>> # To use a Gumbel distribution in a network.
|
||||
>>> class net(Cell):
|
||||
>>> def __init__(self):
|
||||
>>> super(net, self).__init__():
|
||||
>>> self.g1 = msd.Gumbel(0.0, 1.0, dtype=mstype.float32)
|
||||
>>>
|
||||
>>> # The following calls are valid in construct.
|
||||
>>> def construct(self, value, loc_b, scale_b):
|
||||
>>>
|
||||
>>> # Private interfaces of probability functions corresponding to public interfaces, including
|
||||
>>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, have the same
|
||||
>>> # arguments as follows.
|
||||
>>> # Args:
|
||||
>>> # value (Tensor): the value to be evaluated.
|
||||
>>>
|
||||
>>> # Examples of `prob`.
|
||||
>>> # Similar calls can be made to other probability functions
|
||||
>>> # by replacing 'prob' by the name of the function.
|
||||
>>> ans = self.g1.prob(value)
|
||||
>>>
|
||||
>>> # Functions `mean`, `mode`, sd`, `var`, and `entropy` do not take in any argument.
|
||||
>>> ans = self.g1.mean()
|
||||
>>> ans = self.g1.mode()
|
||||
>>> ans = self.g1.sd()
|
||||
>>> ans = self.g1.entropy()
|
||||
>>> ans = self.g1.var()
|
||||
>>>
|
||||
>>> # Interfaces of 'kl_loss' and 'cross_entropy' are the same:
|
||||
>>> # Args:
|
||||
>>> # dist (str): the type of the distributions. Only "Gumbel" is supported.
|
||||
>>> # loc_b (Tensor): the loc of distribution b.
|
||||
>>> # scale_b (Tensor): the scale distribution b.
|
||||
>>>
|
||||
>>> # Examples of `kl_loss`. `cross_entropy` is similar.
|
||||
>>> ans = self.g1.kl_loss('Gumbel', loc_b, scale_b)
|
||||
>>> ans = self.g1.cross_entropy('Gumbel', loc_b, scale_b)
|
||||
>>>
|
||||
>>> # Examples of `sample`.
|
||||
>>> # Args:
|
||||
>>> # shape (tuple): the shape of the sample. Default: ()
|
||||
>>>
|
||||
>>> ans = self.g1.sample()
|
||||
>>> ans = self.g1.sample((2,3))
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
loc,
|
||||
scale,
|
||||
seed=0,
|
||||
dtype=mstype.float32,
|
||||
name="Gumbel"):
|
||||
"""
|
||||
Constructor of Gumbel distribution.
|
||||
"""
|
||||
valid_dtype = mstype.float_type
|
||||
Validator.check_type(type(self).__name__, dtype, valid_dtype)
|
||||
gumbel_cdf = msb.GumbelCDF(loc, scale, dtype)
|
||||
super(Gumbel, self).__init__(
|
||||
distribution=msd.Uniform(0.0, 1.0, dtype=dtype),
|
||||
bijector=msb.Invert(gumbel_cdf),
|
||||
seed=seed, name=name)
|
||||
|
||||
self._parameter_type = gumbel_cdf.parameter_type
|
||||
self._broadcast_shape = gumbel_cdf.event_shape
|
||||
if self._broadcast_shape != ():
|
||||
self._is_scalar_batch = False
|
||||
|
||||
# overwrite default_parameters and parameter_names
|
||||
self._reset_parameters()
|
||||
self._loc = self._add_parameter(loc, 'loc')
|
||||
self._scale = self._add_parameter(scale, 'scale')
|
||||
self._gumbel_bijector = gumbel_cdf
|
||||
|
||||
# ops needed for the class
|
||||
self.cast = P.Cast()
|
||||
self.const = P.ScalarToArray()
|
||||
self.exp = exp_generic
|
||||
self.expm1 = expm1_generic
|
||||
self.fill = P.Fill()
|
||||
self.lgamma = nn.LGamma()
|
||||
self.log = log_generic
|
||||
self.shape = P.Shape()
|
||||
self.sqrt = P.Sqrt()
|
||||
|
||||
@property
|
||||
def loc(self):
|
||||
return self._loc
|
||||
|
||||
@property
|
||||
def scale(self):
|
||||
return self._scale
|
||||
|
||||
def extend_repr(self):
|
||||
if self.is_scalar_batch:
|
||||
str_info = f'loc = {self._loc}, scale = {self._scale}'
|
||||
else:
|
||||
str_info = f'batch_shape = {self._broadcast_shape}'
|
||||
return str_info
|
||||
|
||||
def _mean(self):
|
||||
r"""
|
||||
The mean of the distribution.
|
||||
|
||||
.. math::
|
||||
MEAN(X) = loc + scale * Euler-Mascheroni_constant
|
||||
"""
|
||||
return self.loc + self.scale * np.euler_gamma
|
||||
|
||||
def _mode(self):
|
||||
"""
|
||||
The mode of the distribution.
|
||||
"""
|
||||
return self.loc * self.fill(self.parameter_type, self.shape(self.scale), 1.0)
|
||||
|
||||
def _sd(self):
|
||||
r"""
|
||||
The standard deviation of the distribution.
|
||||
|
||||
.. math::
|
||||
STD(X) = \frac{\pi}{\sqrt(6)} * scale
|
||||
"""
|
||||
scale = self.scale * self.fill(self.parameter_type, self.broadcast_shape, 1.0)
|
||||
return scale * np.pi / self.sqrt(self.const(6.))
|
||||
|
||||
def _entropy(self):
|
||||
r"""
|
||||
Evaluate entropy.
|
||||
|
||||
.. math::
|
||||
H(X) = 1. + \log(scale) + Euler-Mascheroni_constant
|
||||
"""
|
||||
scale = self.scale * self.fill(self.parameter_type, self.broadcast_shape, 1.0)
|
||||
return 1. + self.log(scale) + np.euler_gamma
|
||||
|
||||
def _log_prob(self, value):
|
||||
r"""
|
||||
.. math::
|
||||
log_pdf(X) = -(z + \exp(-z)) - \log(scale)
|
||||
where z = \frac{x - loc}{scale}
|
||||
"""
|
||||
value = self._check_value(value, 'value')
|
||||
z = (value - self.loc) / self.scale
|
||||
return -(z + self.exp(-z)) - self.log(self.scale)
|
||||
|
||||
def _cdf(self, value):
|
||||
r"""
|
||||
.. math::
|
||||
cdf_pdf(X) = \exp(-\exp(-\frac{x - loc}{scale})
|
||||
"""
|
||||
return self._gumbel_bijector("forward", value)
|
||||
|
||||
def _cross_entropy(self, dist, loc_b, scale_b):
|
||||
r"""
|
||||
Evaluate cross entropy between Gumbel distributions.
|
||||
|
||||
Args:
|
||||
dist (str): The type of the distributions. Should be "Gumbel" in this case.
|
||||
loc_b (Tensor): The loc of distribution b.
|
||||
scale_b (Tensor): The scale of distribution b.
|
||||
"""
|
||||
if self.device_target == 'GPU':
|
||||
raise_not_implemented_util('On GPU backend, cross_entropy', self.name)
|
||||
check_distribution_name(dist, 'Gumbel')
|
||||
return self._entropy() + self._kl_loss(dist, loc_b, scale_b)
|
||||
|
||||
def _kl_loss(self, dist, loc_b, scale_b):
|
||||
r"""
|
||||
Evaluate Gumbel-Gumbel kl divergence, i.e. KL(a||b).
|
||||
|
||||
Args:
|
||||
dist (str): The type of the distributions. Should be "Gumbel" in this case.
|
||||
loc_b (Tensor): The loc of distribution b.
|
||||
scale_b (Tensor): The scale of distribution b.
|
||||
|
||||
.. math::
|
||||
KL(a||b) = \log(scale_b / scale_a) + Euler-Mascheroni_constant * (scale_a / scale_b - 1.) +
|
||||
\exp(\frac{(loc_b - loc_a)}{scale_b}) * \Gamma(scale_a / scale_b + 1.) - 1.
|
||||
"""
|
||||
if self.device_target == 'GPU':
|
||||
raise_not_implemented_util('On GPU backend, kl_loss', self.name)
|
||||
check_distribution_name(dist, 'Gumbel')
|
||||
loc_b = self._check_value(loc_b, 'loc_b')
|
||||
scale_b = self._check_value(scale_b, 'scale_b')
|
||||
loc_b = self.cast(loc_b, self.parameter_type)
|
||||
scale_b = self.cast(scale_b, self.parameter_type)
|
||||
return self.log(scale_b) - self.log(self.scale) +\
|
||||
np.euler_gamma * (self.scale / scale_b - 1.) +\
|
||||
self.expm1((loc_b - self.loc) / scale_b + self.lgamma(self.scale / scale_b + 1.))
|
||||
|
||||
def _sample(self, shape=()):
|
||||
origin_shape = shape + self._broadcast_shape
|
||||
if origin_shape == ():
|
||||
sample_shape = (1,)
|
||||
else:
|
||||
sample_shape = origin_shape
|
||||
org_sample = self.distribution("sample", sample_shape)
|
||||
value = self.bijector("forward", org_sample)
|
||||
if origin_shape == ():
|
||||
value = self.squeeze(value)
|
||||
return value
|
|
@ -82,11 +82,21 @@ class TransformedDistribution(Distribution):
|
|||
self._is_linear_transformation = bijector.is_constant_jacobian
|
||||
self.default_parameters = distribution.default_parameters
|
||||
self.parameter_names = distribution.parameter_names
|
||||
|
||||
self.exp = exp_generic
|
||||
self.log = log_generic
|
||||
self.isnan = P.IsNan()
|
||||
self.equal_base = P.Equal()
|
||||
self.select_base = P.Select()
|
||||
self.fill = P.Fill()
|
||||
|
||||
# check if batch shape of the distribution and event shape is broadcastable
|
||||
if hasattr(self.bijector, 'event_shape'):
|
||||
event_shape_tensor = self.fill(self.dtype, self.bijector.event_shape, 0.0)
|
||||
broadcast_shape_tensor = self.fill(self.dtype, self.broadcast_shape, 0.0)
|
||||
self._batch_event = (event_shape_tensor + broadcast_shape_tensor).shape
|
||||
else:
|
||||
self._batch_event = self.broadcast_shape
|
||||
|
||||
@property
|
||||
def bijector(self):
|
||||
|
|
|
@ -0,0 +1,303 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for Gumbel distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
from scipy import special
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore import dtype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Prob(nn.Cell):
|
||||
"""
|
||||
Test class: probability of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Prob, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.gum.prob(x_)
|
||||
|
||||
def test_pdf():
|
||||
"""
|
||||
Test pdf.
|
||||
"""
|
||||
loc = np.array([0.0]).astype(np.float32)
|
||||
scale = np.array([[1.0], [2.0]]).astype(np.float32)
|
||||
gumbel_benchmark = stats.gumbel_r(loc, scale)
|
||||
value = np.array([1.0, 2.0]).astype(np.float32)
|
||||
expect_pdf = gumbel_benchmark.pdf(value).astype(np.float32)
|
||||
pdf = Prob()
|
||||
output = pdf(Tensor(value, dtype=dtype.float32))
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
|
||||
|
||||
class LogProb(nn.Cell):
|
||||
"""
|
||||
Test class: log probability of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogProb, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.gum.log_prob(x_)
|
||||
|
||||
def test_log_likelihood():
|
||||
"""
|
||||
Test log_pdf.
|
||||
"""
|
||||
loc = np.array([0.0]).astype(np.float32)
|
||||
scale = np.array([[1.0], [2.0]]).astype(np.float32)
|
||||
gumbel_benchmark = stats.gumbel_r(loc, scale)
|
||||
expect_logpdf = gumbel_benchmark.logpdf([1.0, 2.0]).astype(np.float32)
|
||||
logprob = LogProb()
|
||||
output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
|
||||
|
||||
class KL(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(KL, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([1.0, 2.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, loc_b, scale_b):
|
||||
return self.gum.kl_loss('Gumbel', loc_b, scale_b)
|
||||
|
||||
def test_kl_loss():
|
||||
"""
|
||||
Test kl_loss.
|
||||
"""
|
||||
loc = np.array([0.0]).astype(np.float32)
|
||||
scale = np.array([1.0, 2.0]).astype(np.float32)
|
||||
|
||||
loc_b = np.array([1.0]).astype(np.float32)
|
||||
scale_b = np.array([1.0, 2.0]).astype(np.float32)
|
||||
|
||||
expect_kl_loss = np.log(scale_b) - np.log(scale) +\
|
||||
np.euler_gamma * (scale / scale_b - 1.) +\
|
||||
np.expm1((loc_b - loc) / scale_b + special.loggamma(scale / scale_b + 1.))
|
||||
|
||||
kl_loss = KL()
|
||||
loc_b = Tensor(loc_b, dtype=dtype.float32)
|
||||
scale_b = Tensor(scale_b, dtype=dtype.float32)
|
||||
output = kl_loss(loc_b, scale_b)
|
||||
tol = 1e-5
|
||||
assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
|
||||
|
||||
class Basics(nn.Cell):
|
||||
"""
|
||||
Test class: mean/sd/mode of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Basics, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
return self.gum.mean(), self.gum.sd(), self.gum.mode()
|
||||
|
||||
def test_basics():
|
||||
"""
|
||||
Test mean/standard deviation/mode.
|
||||
"""
|
||||
basics = Basics()
|
||||
mean, sd, mode = basics()
|
||||
|
||||
loc = np.array([0.0]).astype(np.float32)
|
||||
scale = np.array([[1.0], [2.0]]).astype(np.float32)
|
||||
gumbel_benchmark = stats.gumbel_r(loc, scale)
|
||||
expect_mean = gumbel_benchmark.mean().astype(np.float32)
|
||||
expect_sd = gumbel_benchmark.std().astype(np.float32)
|
||||
expect_mode = np.array([[0.0], [0.0]]).astype(np.float32)
|
||||
tol = 1e-6
|
||||
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
|
||||
assert (np.abs(mode.asnumpy() - expect_mode) < tol).all()
|
||||
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
|
||||
|
||||
class Sampling(nn.Cell):
|
||||
"""
|
||||
Test class: sample of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Sampling, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([1.0, 2.0, 3.0]), dtype=dtype.float32, seed=seed)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self):
|
||||
return self.gum.sample(self.shape)
|
||||
|
||||
def test_sample():
|
||||
"""
|
||||
Test sample.
|
||||
"""
|
||||
shape = (2, 3)
|
||||
seed = 10
|
||||
sample = Sampling(shape, seed=seed)
|
||||
output = sample()
|
||||
assert output.shape == (2, 3, 3)
|
||||
|
||||
class CDF(nn.Cell):
|
||||
"""
|
||||
Test class: cdf of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(CDF, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.gum.cdf(x_)
|
||||
|
||||
def test_cdf():
|
||||
"""
|
||||
Test cdf.
|
||||
"""
|
||||
loc = np.array([0.0]).astype(np.float32)
|
||||
scale = np.array([[1.0], [2.0]]).astype(np.float32)
|
||||
gumbel_benchmark = stats.gumbel_r(loc, scale)
|
||||
expect_cdf = gumbel_benchmark.cdf([1.0, 2.0]).astype(np.float32)
|
||||
cdf = CDF()
|
||||
output = cdf(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 2e-5
|
||||
assert (np.abs(output.asnumpy() - expect_cdf) < tol).all()
|
||||
|
||||
class LogCDF(nn.Cell):
|
||||
"""
|
||||
Test class: log_cdf of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogCDF, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.gum.log_cdf(x_)
|
||||
|
||||
def test_log_cdf():
|
||||
"""
|
||||
Test log cdf.
|
||||
"""
|
||||
loc = np.array([0.0]).astype(np.float32)
|
||||
scale = np.array([[1.0], [2.0]]).astype(np.float32)
|
||||
gumbel_benchmark = stats.gumbel_r(loc, scale)
|
||||
expect_logcdf = gumbel_benchmark.logcdf([1.0, 2.0]).astype(np.float32)
|
||||
logcdf = LogCDF()
|
||||
output = logcdf(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 1e-4
|
||||
assert (np.abs(output.asnumpy() - expect_logcdf) < tol).all()
|
||||
|
||||
class SF(nn.Cell):
|
||||
"""
|
||||
Test class: survival function of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(SF, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.gum.survival_function(x_)
|
||||
|
||||
def test_survival():
|
||||
"""
|
||||
Test log_survival.
|
||||
"""
|
||||
loc = np.array([0.0]).astype(np.float32)
|
||||
scale = np.array([[1.0], [2.0]]).astype(np.float32)
|
||||
gumbel_benchmark = stats.gumbel_r(loc, scale)
|
||||
expect_survival = gumbel_benchmark.sf([1.0, 2.0]).astype(np.float32)
|
||||
survival_function = SF()
|
||||
output = survival_function(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 2e-5
|
||||
assert (np.abs(output.asnumpy() - expect_survival) < tol).all()
|
||||
|
||||
class LogSF(nn.Cell):
|
||||
"""
|
||||
Test class: log survival function of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(LogSF, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.gum.log_survival(x_)
|
||||
|
||||
def test_log_survival():
|
||||
"""
|
||||
Test log_survival.
|
||||
"""
|
||||
loc = np.array([0.0]).astype(np.float32)
|
||||
scale = np.array([[1.0], [2.0]]).astype(np.float32)
|
||||
gumbel_benchmark = stats.gumbel_r(loc, scale)
|
||||
expect_log_survival = gumbel_benchmark.logsf([1.0, 2.0]).astype(np.float32)
|
||||
log_survival = LogSF()
|
||||
output = log_survival(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 5e-4
|
||||
assert (np.abs(output.asnumpy() - expect_log_survival) < tol).all()
|
||||
|
||||
class EntropyH(nn.Cell):
|
||||
"""
|
||||
Test class: entropy of Gumbel distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(EntropyH, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
return self.gum.entropy()
|
||||
|
||||
def test_entropy():
|
||||
"""
|
||||
Test entropy.
|
||||
"""
|
||||
loc = np.array([0.0]).astype(np.float32)
|
||||
scale = np.array([[1.0], [2.0]]).astype(np.float32)
|
||||
gumbel_benchmark = stats.gumbel_r(loc, scale)
|
||||
expect_entropy = gumbel_benchmark.entropy().astype(np.float32)
|
||||
entropy = EntropyH()
|
||||
output = entropy()
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_entropy) < tol).all()
|
||||
|
||||
class CrossEntropy(nn.Cell):
|
||||
"""
|
||||
Test class: cross entropy between Gumbel distributions.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(CrossEntropy, self).__init__()
|
||||
self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
entropy = self.gum.entropy()
|
||||
kl_loss = self.gum.kl_loss('Gumbel', x_, y_)
|
||||
h_sum_kl = entropy + kl_loss
|
||||
cross_entropy = self.gum.cross_entropy('Gumbel', x_, y_)
|
||||
return h_sum_kl - cross_entropy
|
||||
|
||||
def test_cross_entropy():
|
||||
"""
|
||||
Test cross_entropy.
|
||||
"""
|
||||
cross_entropy = CrossEntropy()
|
||||
loc = Tensor([1.0], dtype=dtype.float32)
|
||||
scale = Tensor([1.0], dtype=dtype.float32)
|
||||
diff = cross_entropy(loc, scale)
|
||||
tol = 1e-6
|
||||
assert (np.abs(diff.asnumpy() - np.zeros(diff.shape)) < tol).all()
|
|
@ -0,0 +1,153 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.probability.distribution.gumbel.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
def test_gumbel_shape_errpr():
|
||||
"""
|
||||
Invalid shapes.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
msd.Gumbel([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||
|
||||
def test_type():
|
||||
with pytest.raises(TypeError):
|
||||
msd.Gumbel(0., 1., dtype=dtype.int32)
|
||||
|
||||
def test_name():
|
||||
with pytest.raises(TypeError):
|
||||
msd.Gumbel(0., 1., name=1.0)
|
||||
|
||||
def test_seed():
|
||||
with pytest.raises(TypeError):
|
||||
msd.Gumbel(0., 1., seed='seed')
|
||||
|
||||
def test_scale():
|
||||
with pytest.raises(ValueError):
|
||||
msd.Gumbel(0., 0.)
|
||||
with pytest.raises(ValueError):
|
||||
msd.Gumbel(0., -1.)
|
||||
|
||||
def test_arguments():
|
||||
"""
|
||||
args passing during initialization.
|
||||
"""
|
||||
l = msd.Gumbel([3.0], [4.0], dtype=dtype.float32)
|
||||
assert isinstance(l, msd.Distribution)
|
||||
|
||||
|
||||
class GumbelProb(nn.Cell):
|
||||
"""
|
||||
Gumbel distribution: initialize with loc/scale.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GumbelProb, self).__init__()
|
||||
self.gumbel = msd.Gumbel(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.gumbel.prob(value)
|
||||
log_prob = self.gumbel.log_prob(value)
|
||||
cdf = self.gumbel.cdf(value)
|
||||
log_cdf = self.gumbel.log_cdf(value)
|
||||
sf = self.gumbel.survival_function(value)
|
||||
log_sf = self.gumbel.log_survival(value)
|
||||
return prob + log_prob + cdf + log_cdf + sf + log_sf
|
||||
|
||||
def test_gumbel_prob():
|
||||
"""
|
||||
Test probability functions: passing value through construct.
|
||||
"""
|
||||
net = GumbelProb()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
ans = net(value)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
class KL(nn.Cell):
|
||||
"""
|
||||
Test kl_loss.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(KL, self).__init__()
|
||||
self.gumbel = msd.Gumbel(3.0, 4.0)
|
||||
|
||||
def construct(self, mu, s):
|
||||
kl = self.gumbel.kl_loss('Gumbel', mu, s)
|
||||
cross_entropy = self.gumbel.cross_entropy('Gumbel', mu, s)
|
||||
return kl + cross_entropy
|
||||
|
||||
def test_kl_cross_entropy():
|
||||
"""
|
||||
Test kl_loss and cross_entropy.
|
||||
"""
|
||||
net = KL()
|
||||
loc_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
scale_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
|
||||
ans = net(loc_b, scale_b)
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
|
||||
class GumbelBasics(nn.Cell):
|
||||
"""
|
||||
Test class: basic loc/scale function.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GumbelBasics, self).__init__()
|
||||
self.gumbel = msd.Gumbel(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self):
|
||||
mean = self.gumbel.mean()
|
||||
sd = self.gumbel.sd()
|
||||
mode = self.gumbel.mode()
|
||||
entropy = self.gumbel.entropy()
|
||||
return mean + sd + mode + entropy
|
||||
|
||||
def test_bascis():
|
||||
"""
|
||||
Test mean/sd/mode/entropy functionality of Gumbel.
|
||||
"""
|
||||
net = GumbelBasics()
|
||||
ans = net()
|
||||
assert isinstance(ans, Tensor)
|
||||
|
||||
|
||||
class GumbelConstruct(nn.Cell):
|
||||
"""
|
||||
Gumbel distribution: going through construct.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(GumbelConstruct, self).__init__()
|
||||
self.gumbel = msd.Gumbel(3.0, 4.0)
|
||||
|
||||
|
||||
def construct(self, value):
|
||||
prob = self.gumbel('prob', value)
|
||||
prob1 = self.gumbel.prob(value)
|
||||
return prob + prob1
|
||||
|
||||
def test_gumbel_construct():
|
||||
"""
|
||||
Test probability function going through construct.
|
||||
"""
|
||||
net = GumbelConstruct()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
ans = net(value)
|
||||
assert isinstance(ans, Tensor)
|
Loading…
Reference in New Issue