[feat] [assistant] [I3T92M] add new math operator IsInf

This commit is contained in:
doit 2021-10-25 14:40:40 +08:00
parent 5d67d97b58
commit cd9242eaa9
8 changed files with 277 additions and 8 deletions

View File

@ -0,0 +1,82 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/isinf_cpu_kernel.h"
#include <cmath>
#include "abstract/utils.h"
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void IsInfCPUKernel::InitKernel(const CNodePtr &kernelNode) {
MS_EXCEPTION_IF_NULL(kernelNode);
size_t input_num = AnfAlgo::GetInputTensorNum(kernelNode);
if (input_num != 1) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but IsInfCPUKernel needs 1 inputs.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernelNode);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but IsInfCPUKernel needs 1 output.";
}
input_dtype_ = AnfAlgo::GetInputDeviceDataType(kernelNode, 0);
if (dtype_map_.find(input_dtype_) == dtype_map_.end()) {
MS_LOG(EXCEPTION) << "Unsupported input type found.";
}
}
bool IsInfCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &,
const std::vector<kernel::AddressPtr> &outputs) {
if (input_dtype_ == kNumberTypeFloat16) {
LaunchKernelFloat16(inputs, outputs);
} else if (input_dtype_ == kNumberTypeFloat32 || input_dtype_ == kNumberTypeFloat) {
LaunchKernelFloat<float>(inputs, outputs);
} else if (input_dtype_ == kNumberTypeFloat64) {
LaunchKernelFloat<double>(inputs, outputs);
} else {
MS_LOG(EXCEPTION) << "Only support float, but actual data type is " << TypeIdLabel(input_dtype_);
}
return true;
}
void IsInfCPUKernel::LaunchKernelFloat16(const std::vector<AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
float16 *input = reinterpret_cast<float16 *>(inputs[0]->addr);
bool *output = reinterpret_cast<bool *>(outputs[0]->addr);
size_t elem_num = inputs[0]->size / sizeof(float16);
for (size_t i = 0; i < elem_num; i++) {
float temp_num = static_cast<float>(input[i]);
output[i] = std::isinf(temp_num);
}
}
template <typename T>
void IsInfCPUKernel::LaunchKernelFloat(const std::vector<AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
T *input = reinterpret_cast<T *>(inputs[0]->addr);
bool *output = reinterpret_cast<bool *>(outputs[0]->addr);
size_t elem_num = inputs[0]->size / sizeof(T);
for (size_t i = 0; i < elem_num; i++) {
output[i] = std::isinf(input[i]);
}
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,57 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IsInf_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IsInf_CPU_KERNEL_H_
#include <vector>
#include <map>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class IsInfCPUKernel : public CPUKernel {
public:
IsInfCPUKernel() = default;
~IsInfCPUKernel() override = default;
void InitKernel(const CNodePtr &kernelNode) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
template <typename T>
void LaunchKernelFloat(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
void LaunchKernelFloat16(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
private:
std::map<TypeId, size_t> dtype_map_ = {
{kNumberTypeFloat16, sizeof(float16)}, {kNumberTypeFloat32, sizeof(float)}, {kNumberTypeFloat64, sizeof(double)}};
TypeId input_dtype_{kTypeUnknown};
};
MS_REG_CPU_KERNEL(IsInf, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeBool), IsInfCPUKernel);
MS_REG_CPU_KERNEL(IsInf, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeBool), IsInfCPUKernel);
MS_REG_CPU_KERNEL(IsInf, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeBool), IsInfCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IsInf_CPU_KERNEL_H_

View File

@ -0,0 +1,57 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <map>
#include <string>
#include "ops/is_inf.h"
#include "ops/op_utils.h"
#include "utils/check_convert_utils.h"
#include "abstract/primitive_infer_map.h"
namespace mindspore {
namespace ops {
namespace {
abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
MS_EXCEPTION_IF_NULL(primitive);
const int64_t input_num = 1;
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, primitive->name());
for (const auto &item : input_args) {
MS_EXCEPTION_IF_NULL(item);
}
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
return std::make_shared<abstract::Shape>(x_shape);
}
TypePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
for (const auto &item : input_args) {
MS_EXCEPTION_IF_NULL(item);
}
const int64_t input_num = 1;
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, prim->name());
CheckAndConvertUtils::CheckTensorTypeValid("x", input_args[0]->BuildType(), {kFloat16, kFloat32, kFloat64},
prim->name());
return kBool;
}
} // namespace
AbstractBasePtr IsInfInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args) {
return abstract::MakeAbstract(InferShape(primitive, input_args), InferType(primitive, input_args));
}
REGISTER_PRIMITIVE_EVAL_IMPL(IsInf, prim::kPrimIsInf, IsInfInfer, nullptr, true);
} // namespace ops
} // namespace mindspore

View File

@ -0,0 +1,42 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CORE_OPS_IS_INF_H_
#define MINDSPORE_CORE_OPS_IS_INF_H_
#include <vector>
#include <memory>
#include "ops/primitive_c.h"
#include "ops/op_utils.h"
#include "abstract/abstract_value.h"
#include "utils/check_convert_utils.h"
namespace mindspore {
namespace ops {
constexpr auto kNameIsInf = "IsInf";
class IsInf : public PrimitiveC {
public:
IsInf() : PrimitiveC(kNameIsInf) { InitIOName({"x"}, {"y"}); }
~IsInf() = default;
MS_DECLARE_PARENT(IsInf, PrimitiveC);
};
AbstractBasePtr IsInfInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
const std::vector<AbstractBasePtr> &input_args);
using PrimIsInfPtr = std::shared_ptr<IsInf>;
} // namespace ops
} // namespace mindspore
#endif // MINDSPORE_CORE_OPS_IS_INF_H_

View File

@ -34,6 +34,7 @@ from .get_next import _get_next_aicpu
from .print_tensor import _print_aicpu
from .topk import _top_k_aicpu
from .is_finite import _is_finite_aicpu
from .is_inf import _is_inf_aicpu
from .reshape import _reshape_aicpu
from .flatten import _flatten_aicpu
from .squeeze import _squeeze_aicpu

View File

@ -0,0 +1,31 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""IsInf op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
is_inf_op_info = AiCPURegOp("IsInf") \
.fusion_type("OPAQUE") \
.input(0, "x", "required") \
.output(0, "y", "required") \
.dtype_format(DataType.F16_Default, DataType.BOOL_Default) \
.dtype_format(DataType.F32_Default, DataType.BOOL_Default) \
.dtype_format(DataType.F64_Default, DataType.BOOL_Default) \
.get_op_info()
@op_info_register(is_inf_op_info)
def _is_inf_aicpu():
"""IsInf AiCPU register"""
return

View File

@ -4043,7 +4043,7 @@ class IsNan(PrimitiveWithInfer):
return mstype.tensor_type(mstype.bool_)
class IsInf(PrimitiveWithInfer):
class IsInf(Primitive):
r"""
Determines which elements are inf or -inf for each position
@ -4067,7 +4067,7 @@ class IsInf(PrimitiveWithInfer):
TypeError: If `x` is not a Tensor.
Supported Platforms:
``GPU``
``GPU`` ``CPU``
Examples:
>>> is_inf = ops.IsInf()
@ -4082,12 +4082,6 @@ class IsInf(PrimitiveWithInfer):
"""Initialize IsInf"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
return mstype.tensor_type(mstype.bool_)
class IsFinite(PrimitiveWithInfer):
r"""

View File

@ -1193,6 +1193,11 @@ test_case_math_ops = [
'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
'skip': ['backward']}),
('IsInf', {
'block': P.IsInf(),
'desc_inputs': [Tensor(np.array([np.log(-1), 1, np.log(0)]).astype(np.float32))],
'desc_bprop': [],
'skip': ['backward']}),
('ACos', {
'block': P.ACos(),
'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],