forked from mindspore-Ecosystem/mindspore
[feat] [assistant] [I3T92M] add new math operator IsInf
This commit is contained in:
parent
5d67d97b58
commit
cd9242eaa9
|
@ -0,0 +1,82 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/isinf_cpu_kernel.h"
|
||||
#include <cmath>
|
||||
#include "abstract/utils.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void IsInfCPUKernel::InitKernel(const CNodePtr &kernelNode) {
|
||||
MS_EXCEPTION_IF_NULL(kernelNode);
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernelNode);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but IsInfCPUKernel needs 1 inputs.";
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernelNode);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but IsInfCPUKernel needs 1 output.";
|
||||
}
|
||||
|
||||
input_dtype_ = AnfAlgo::GetInputDeviceDataType(kernelNode, 0);
|
||||
if (dtype_map_.find(input_dtype_) == dtype_map_.end()) {
|
||||
MS_LOG(EXCEPTION) << "Unsupported input type found.";
|
||||
}
|
||||
}
|
||||
|
||||
bool IsInfCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (input_dtype_ == kNumberTypeFloat16) {
|
||||
LaunchKernelFloat16(inputs, outputs);
|
||||
} else if (input_dtype_ == kNumberTypeFloat32 || input_dtype_ == kNumberTypeFloat) {
|
||||
LaunchKernelFloat<float>(inputs, outputs);
|
||||
} else if (input_dtype_ == kNumberTypeFloat64) {
|
||||
LaunchKernelFloat<double>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Only support float, but actual data type is " << TypeIdLabel(input_dtype_);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void IsInfCPUKernel::LaunchKernelFloat16(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
float16 *input = reinterpret_cast<float16 *>(inputs[0]->addr);
|
||||
bool *output = reinterpret_cast<bool *>(outputs[0]->addr);
|
||||
|
||||
size_t elem_num = inputs[0]->size / sizeof(float16);
|
||||
|
||||
for (size_t i = 0; i < elem_num; i++) {
|
||||
float temp_num = static_cast<float>(input[i]);
|
||||
output[i] = std::isinf(temp_num);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void IsInfCPUKernel::LaunchKernelFloat(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
T *input = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
bool *output = reinterpret_cast<bool *>(outputs[0]->addr);
|
||||
|
||||
size_t elem_num = inputs[0]->size / sizeof(T);
|
||||
|
||||
for (size_t i = 0; i < elem_num; i++) {
|
||||
output[i] = std::isinf(input[i]);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,57 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IsInf_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IsInf_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class IsInfCPUKernel : public CPUKernel {
|
||||
public:
|
||||
IsInfCPUKernel() = default;
|
||||
~IsInfCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernelNode) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
template <typename T>
|
||||
void LaunchKernelFloat(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
void LaunchKernelFloat16(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
std::map<TypeId, size_t> dtype_map_ = {
|
||||
{kNumberTypeFloat16, sizeof(float16)}, {kNumberTypeFloat32, sizeof(float)}, {kNumberTypeFloat64, sizeof(double)}};
|
||||
|
||||
TypeId input_dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(IsInf, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeBool), IsInfCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(IsInf, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeBool), IsInfCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(IsInf, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeBool), IsInfCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IsInf_CPU_KERNEL_H_
|
|
@ -0,0 +1,57 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
|
||||
#include "ops/is_inf.h"
|
||||
#include "ops/op_utils.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "abstract/primitive_infer_map.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
const int64_t input_num = 1;
|
||||
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, primitive->name());
|
||||
for (const auto &item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||
return std::make_shared<abstract::Shape>(x_shape);
|
||||
}
|
||||
|
||||
TypePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
for (const auto &item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
const int64_t input_num = 1;
|
||||
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, prim->name());
|
||||
CheckAndConvertUtils::CheckTensorTypeValid("x", input_args[0]->BuildType(), {kFloat16, kFloat32, kFloat64},
|
||||
prim->name());
|
||||
return kBool;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
AbstractBasePtr IsInfInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
return abstract::MakeAbstract(InferShape(primitive, input_args), InferType(primitive, input_args));
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(IsInf, prim::kPrimIsInf, IsInfInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,42 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CORE_OPS_IS_INF_H_
|
||||
#define MINDSPORE_CORE_OPS_IS_INF_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
|
||||
#include "ops/primitive_c.h"
|
||||
#include "ops/op_utils.h"
|
||||
#include "abstract/abstract_value.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameIsInf = "IsInf";
|
||||
class IsInf : public PrimitiveC {
|
||||
public:
|
||||
IsInf() : PrimitiveC(kNameIsInf) { InitIOName({"x"}, {"y"}); }
|
||||
~IsInf() = default;
|
||||
MS_DECLARE_PARENT(IsInf, PrimitiveC);
|
||||
};
|
||||
|
||||
AbstractBasePtr IsInfInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
using PrimIsInfPtr = std::shared_ptr<IsInf>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CORE_OPS_IS_INF_H_
|
|
@ -34,6 +34,7 @@ from .get_next import _get_next_aicpu
|
|||
from .print_tensor import _print_aicpu
|
||||
from .topk import _top_k_aicpu
|
||||
from .is_finite import _is_finite_aicpu
|
||||
from .is_inf import _is_inf_aicpu
|
||||
from .reshape import _reshape_aicpu
|
||||
from .flatten import _flatten_aicpu
|
||||
from .squeeze import _squeeze_aicpu
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""IsInf op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
is_inf_op_info = AiCPURegOp("IsInf") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "x", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.F16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(is_inf_op_info)
|
||||
def _is_inf_aicpu():
|
||||
"""IsInf AiCPU register"""
|
||||
return
|
|
@ -4043,7 +4043,7 @@ class IsNan(PrimitiveWithInfer):
|
|||
return mstype.tensor_type(mstype.bool_)
|
||||
|
||||
|
||||
class IsInf(PrimitiveWithInfer):
|
||||
class IsInf(Primitive):
|
||||
r"""
|
||||
Determines which elements are inf or -inf for each position
|
||||
|
||||
|
@ -4067,7 +4067,7 @@ class IsInf(PrimitiveWithInfer):
|
|||
TypeError: If `x` is not a Tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> is_inf = ops.IsInf()
|
||||
|
@ -4082,12 +4082,6 @@ class IsInf(PrimitiveWithInfer):
|
|||
"""Initialize IsInf"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
return mstype.tensor_type(mstype.bool_)
|
||||
|
||||
|
||||
class IsFinite(PrimitiveWithInfer):
|
||||
r"""
|
||||
|
|
|
@ -1193,6 +1193,11 @@ test_case_math_ops = [
|
|||
'desc_inputs': [Tensor(np.array([[1, 2], [3, 4], [5, 6]]).astype(np.float32)),
|
||||
Tensor(np.array([[0.5, 1], [1, 1.5]]).astype(np.float32))],
|
||||
'skip': ['backward']}),
|
||||
('IsInf', {
|
||||
'block': P.IsInf(),
|
||||
'desc_inputs': [Tensor(np.array([np.log(-1), 1, np.log(0)]).astype(np.float32))],
|
||||
'desc_bprop': [],
|
||||
'skip': ['backward']}),
|
||||
('ACos', {
|
||||
'block': P.ACos(),
|
||||
'desc_inputs': [Tensor(np.array([2., 3.]).astype(np.float32))],
|
||||
|
|
Loading…
Reference in New Issue