forked from mindspore-Ecosystem/mindspore
matmul support fp16
This commit is contained in:
parent
b2ba24e815
commit
cac2399044
|
@ -1,3 +1,4 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void MatMul(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
||||
__write_only image2d_t output, int2 offset_ci, int2 offset_co, int has_bias) {
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
|
||||
#include <string>
|
||||
#include <set>
|
||||
#include "src/common/utils.h"
|
||||
#include "nnacl/fp32/common_func.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "src/runtime/opencl/opencl_runtime.h"
|
||||
#include "src/runtime/kernel/opencl/kernel/conv2d_transpose.h"
|
||||
|
@ -73,10 +73,6 @@ void Conv2dTransposeOpenCLKernel::PadWeight() {
|
|||
int div_co = UP_DIV(co, C4NUM);
|
||||
auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator();
|
||||
auto data_size = enable_fp16_ ? sizeof(float16_t) : sizeof(float);
|
||||
using FLT = float;
|
||||
if (enable_fp16_) {
|
||||
using FLT = float16_t;
|
||||
}
|
||||
|
||||
// IHWO to OHWI4(I)4(O)(converter format is IHWO)
|
||||
// init padWeight_(buffer mem)
|
||||
|
@ -97,8 +93,8 @@ void Conv2dTransposeOpenCLKernel::PadWeight() {
|
|||
int ori_index = ((ci_offset * kh + kh_i) * kw + kw_i) * ci + co_offset;
|
||||
if (enable_fp16_) {
|
||||
if (weight_dtype == kNumberTypeFloat32) {
|
||||
reinterpret_cast<float16_t *>(padWeight_)[index++] =
|
||||
lite::Float32ToShort(reinterpret_cast<float *>(origin_weight)[ori_index]);
|
||||
reinterpret_cast<uint16_t *>(padWeight_)[index++] =
|
||||
Float32ToShort(reinterpret_cast<float *>(origin_weight)[ori_index]);
|
||||
} else {
|
||||
reinterpret_cast<float16_t *>(padWeight_)[index++] =
|
||||
reinterpret_cast<float16_t *>(origin_weight)[ori_index];
|
||||
|
@ -107,7 +103,11 @@ void Conv2dTransposeOpenCLKernel::PadWeight() {
|
|||
reinterpret_cast<float *>(padWeight_)[index++] = reinterpret_cast<float *>(origin_weight)[ori_index];
|
||||
}
|
||||
} else {
|
||||
reinterpret_cast<FLT *>(padWeight_)[index++] = 0.;
|
||||
if (enable_fp16_) {
|
||||
reinterpret_cast<float16_t *>(padWeight_)[index++] = 0.;
|
||||
} else {
|
||||
reinterpret_cast<float *>(padWeight_)[index++] = 0.;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -134,7 +134,7 @@ void Conv2dTransposeOpenCLKernel::PadWeight() {
|
|||
if (bias_dtype == kNumberTypeFloat32 && enable_fp16_) {
|
||||
auto fdata = reinterpret_cast<float *>(in_tensors_[2]->Data());
|
||||
for (int i = 0; i < co; i++) {
|
||||
reinterpret_cast<float16_t *>(bias_)[i] = lite::Float32ToShort(fdata[i]);
|
||||
reinterpret_cast<uint16_t *>(bias_)[i] = Float32ToShort(fdata[i]);
|
||||
}
|
||||
} else {
|
||||
memcpy(bias_, in_tensors_[2]->Data(), co * data_size);
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include "nnacl/fp32/common_func.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "src/runtime/opencl/opencl_runtime.h"
|
||||
#include "nnacl/fp32/matmul.h"
|
||||
|
@ -34,7 +35,7 @@ namespace mindspore::kernel {
|
|||
int MatMulOpenCLKernel::Init() {
|
||||
std::string kernel_name = "MatMul";
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
|
||||
enable_fp16_ = ocl_runtime->GetFp16Enable();
|
||||
#ifdef PROGRAM_WITH_IL
|
||||
kernel_ = ocl_runtime->GetKernelFromBinary(kernel_name);
|
||||
#else
|
||||
|
@ -74,11 +75,12 @@ int MatMulOpenCLKernel::ReSize() { return RET_OK; }
|
|||
|
||||
void MatMulOpenCLKernel::PadWeight() {
|
||||
auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator();
|
||||
padWeight_ =
|
||||
reinterpret_cast<FLOAT_t *>(allocator->Malloc(sizeCI.s[1] * sizeCO.s[1] * C4NUM * C4NUM * sizeof(FLOAT_t)));
|
||||
padWeight_ = reinterpret_cast<FLOAT_t *>(allocator->MapBuffer(padWeight_, CL_MAP_WRITE, nullptr, true));
|
||||
|
||||
auto origin_weight = reinterpret_cast<FLOAT_t *>(in_tensors_.at(kWeightIndex)->Data());
|
||||
size_t dtype_size = enable_fp16_ ? sizeof(float16_t) : sizeof(float);
|
||||
padWeight_ = allocator->Malloc(sizeCI.s[1] * sizeCO.s[1] * C4NUM * C4NUM * dtype_size);
|
||||
padWeight_ = allocator->MapBuffer(padWeight_, CL_MAP_WRITE, nullptr, true);
|
||||
|
||||
auto origin_weight = in_tensors_.at(kWeightIndex)->Data();
|
||||
int divCI = sizeCI.s[1];
|
||||
int divCO = sizeCO.s[1];
|
||||
int co = sizeCO.s[0];
|
||||
|
@ -90,9 +92,29 @@ void MatMulOpenCLKernel::PadWeight() {
|
|||
int src_x = i * C4NUM + l;
|
||||
int src_y = j * C4NUM + k;
|
||||
if (src_x < sizeCI.s[0] && src_y < sizeCO.s[0]) {
|
||||
padWeight_[index++] = origin_weight[src_y * sizeCI.s[0] + src_x];
|
||||
if (enable_fp16_) {
|
||||
if (in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat32) {
|
||||
reinterpret_cast<uint16_t *>(padWeight_)[index++] =
|
||||
Float32ToShort(reinterpret_cast<float *>(origin_weight)[src_y * sizeCI.s[0] + src_x]);
|
||||
} else {
|
||||
reinterpret_cast<uint16_t *>(padWeight_)[index++] =
|
||||
reinterpret_cast<uint16_t *>(origin_weight)[src_y * sizeCI.s[0] + src_x];
|
||||
}
|
||||
} else {
|
||||
if (in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat16) {
|
||||
reinterpret_cast<float *>(padWeight_)[index++] =
|
||||
ShortToFloat32(reinterpret_cast<uint16_t *>(origin_weight)[src_y * sizeCI.s[0] + src_x]);
|
||||
} else {
|
||||
reinterpret_cast<float *>(padWeight_)[index++] =
|
||||
reinterpret_cast<float *>(origin_weight)[src_y * sizeCI.s[0] + src_x];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
padWeight_[index++] = 0;
|
||||
if (enable_fp16_) {
|
||||
reinterpret_cast<float16_t *>(padWeight_)[index++] = 0;
|
||||
} else {
|
||||
reinterpret_cast<float *>(padWeight_)[index++] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -102,17 +124,23 @@ void MatMulOpenCLKernel::PadWeight() {
|
|||
size_t im_dst_x, im_dst_y;
|
||||
im_dst_x = divCO;
|
||||
im_dst_y = 1;
|
||||
#ifdef ENABLE_FP16
|
||||
size_t img_dtype = CL_HALF_FLOAT;
|
||||
#else
|
||||
size_t img_dtype = CL_FLOAT;
|
||||
#endif
|
||||
if (enable_fp16_) {
|
||||
img_dtype = CL_HALF_FLOAT;
|
||||
}
|
||||
std::vector<size_t> img_size{im_dst_x, im_dst_y, img_dtype};
|
||||
bias_ = reinterpret_cast<FLOAT_t *>(allocator->Malloc(im_dst_x * im_dst_y * C4NUM * sizeof(FLOAT_t), img_size));
|
||||
bias_ = reinterpret_cast<FLOAT_t *>(allocator->MapBuffer(bias_, CL_MAP_WRITE, nullptr, true));
|
||||
memset(bias_, 0x00, divCO * C4NUM * sizeof(FLOAT_t));
|
||||
bias_ = allocator->Malloc(im_dst_x * im_dst_y * C4NUM * dtype_size, img_size);
|
||||
bias_ = allocator->MapBuffer(bias_, CL_MAP_WRITE, nullptr, true);
|
||||
memset(bias_, 0x00, divCO * C4NUM * dtype_size);
|
||||
if (in_tensors_.size() >= 3) {
|
||||
memcpy(bias_, in_tensors_[2]->Data(), co * sizeof(FLOAT_t));
|
||||
if (in_tensors_[2]->data_type() == kNumberTypeFloat32 && enable_fp16_) {
|
||||
auto fdata = reinterpret_cast<float *>(in_tensors_[2]->Data());
|
||||
for (int i = 0; i < co; i++) {
|
||||
reinterpret_cast<uint16_t *>(bias_)[i] = Float32ToShort(fdata[i]);
|
||||
}
|
||||
} else {
|
||||
memcpy(bias_, in_tensors_[2]->Data(), co * dtype_size);
|
||||
}
|
||||
}
|
||||
allocator->UnmapBuffer(bias_);
|
||||
}
|
||||
|
@ -121,11 +149,10 @@ int MatMulOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size)
|
|||
size_t im_dst_x, im_dst_y;
|
||||
im_dst_x = sizeCO.s[1];
|
||||
im_dst_y = 1;
|
||||
#ifdef ENABLE_FP16
|
||||
size_t img_dtype = CL_HALF_FLOAT;
|
||||
#else
|
||||
size_t img_dtype = CL_FLOAT;
|
||||
#endif
|
||||
if (enable_fp16_) {
|
||||
img_dtype = CL_HALF_FLOAT;
|
||||
}
|
||||
img_size->clear();
|
||||
std::vector<size_t> vec{im_dst_x, im_dst_y, img_dtype};
|
||||
*img_size = vec;
|
||||
|
|
|
@ -23,7 +23,6 @@
|
|||
#include "nnacl/conv_parameter.h"
|
||||
#include "src/runtime/opencl/opencl_runtime.h"
|
||||
|
||||
|
||||
namespace mindspore::kernel {
|
||||
|
||||
class MatMulOpenCLKernel : public OpenCLKernel {
|
||||
|
@ -43,9 +42,10 @@ class MatMulOpenCLKernel : public OpenCLKernel {
|
|||
|
||||
private:
|
||||
cl::Kernel kernel_;
|
||||
FLOAT_t *padWeight_;
|
||||
FLOAT_t *bias_;
|
||||
bool hasBias_ = false;
|
||||
void *padWeight_;
|
||||
void *bias_;
|
||||
bool hasBias_{false};
|
||||
bool enable_fp16_{false};
|
||||
cl_int2 sizeCI;
|
||||
cl_int2 sizeCO;
|
||||
};
|
||||
|
|
|
@ -22,6 +22,7 @@
|
|||
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/conv2d_transpose.h"
|
||||
#include "mindspore/core/utils/log_adapter.h"
|
||||
#include "mindspore/lite/test/ut/src/runtime/kernel/opencl/utils_tests.h"
|
||||
|
||||
namespace mindspore {
|
||||
class TestConv2dTransposeOpenCL : public mindspore::CommonTest {
|
||||
|
@ -29,7 +30,7 @@ class TestConv2dTransposeOpenCL : public mindspore::CommonTest {
|
|||
TestConv2dTransposeOpenCL() {}
|
||||
};
|
||||
|
||||
void RunTestCase(const std::vector<int> shape, const std::vector<std::string> file_path, bool fp16) {
|
||||
void RunTestCaseConv2dTranspose(const std::vector<int> shape, const std::vector<std::string> file_path, bool fp16) {
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
if (fp16) {
|
||||
ocl_runtime->SetFp16Enable(true);
|
||||
|
@ -146,32 +147,12 @@ void RunTestCase(const std::vector<int> shape, const std::vector<std::string> fi
|
|||
pGraph->Init();
|
||||
memcpy(inputs[0]->Data(), input_data, input_size);
|
||||
pGraph->Run();
|
||||
using FLT = float;
|
||||
if (fp16) {
|
||||
using FLT = float16_t;
|
||||
CompareOutput(tensor_out, file_path[3], static_cast<float16_t>(1e-2), 2e-2);
|
||||
} else {
|
||||
CompareOutput(tensor_out, file_path[3], static_cast<float>(1e-5));
|
||||
}
|
||||
std::cout << "==================output data=================" << std::endl;
|
||||
FLT *output_data = reinterpret_cast<FLT *>(tensor_out->Data());
|
||||
std::cout << std::endl;
|
||||
size_t output_size;
|
||||
std::string output_path = file_path[3];
|
||||
auto correct_data = reinterpret_cast<FLT *>(mindspore::lite::ReadFile(output_path.c_str(), &output_size));
|
||||
if (correct_data == nullptr) {
|
||||
MS_LOG(ERROR) << "correct_data create error.";
|
||||
return;
|
||||
}
|
||||
int size_n = oh * ow * co;
|
||||
size_n = size_n > 100 ? 100 : size_n;
|
||||
for (int i = 0; i < size_n; i++) {
|
||||
std::cout << output_data[i] << ", " << correct_data[i] << " ";
|
||||
if ((i + 1) % co == 0) {
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
// compare
|
||||
CommonTest::CompareOutputData(output_data, correct_data, oh * ow * co, 0.00001);
|
||||
inputs[0]->SetData(nullptr);
|
||||
outputs[0]->SetData(nullptr);
|
||||
MS_LOG(INFO) << "Test Conv2dTransposeFp32 passed";
|
||||
|
@ -190,7 +171,7 @@ TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp32) {
|
|||
"./test_data/conv2d_transpose/conv2d_transpose_fp32_weight.bin",
|
||||
"./test_data/conv2d_transpose/conv2d_transpose_fp32_bias.bin",
|
||||
"./test_data/conv2d_transpose/conv2d_transpose_fp32_output.bin"};
|
||||
RunTestCase(shape, file_path, false);
|
||||
RunTestCaseConv2dTranspose(shape, file_path, false);
|
||||
}
|
||||
|
||||
TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp16) {
|
||||
|
@ -207,6 +188,6 @@ TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp16) {
|
|||
"./test_data/conv2d_transpose/conv2d_transpose_fp16_weight.bin",
|
||||
"./test_data/conv2d_transpose/conv2d_transpose_fp16_bias.bin",
|
||||
"./test_data/conv2d_transpose/conv2d_transpose_fp16_output.bin"};
|
||||
RunTestCase(shape, file_path, true);
|
||||
RunTestCaseConv2dTranspose(shape, file_path, true);
|
||||
}
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/matmul.h"
|
||||
#include "mindspore/lite/test/ut/src/runtime/kernel/opencl/utils_tests.h"
|
||||
|
||||
namespace mindspore {
|
||||
class TestMatMulOpenCL : public mindspore::CommonTest {
|
||||
|
@ -28,29 +29,32 @@ class TestMatMulOpenCL : public mindspore::CommonTest {
|
|||
TestMatMulOpenCL() {}
|
||||
};
|
||||
|
||||
TEST_F(TestMatMulOpenCL, MatMulFp32) {
|
||||
void RunTestCaseMatMul(const std::vector<int> shape, const std::vector<std::string> file_path, bool fp16) {
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
ocl_runtime->Init();
|
||||
if (fp16) {
|
||||
ocl_runtime->SetFp16Enable(true);
|
||||
}
|
||||
auto allocator = ocl_runtime->GetAllocator();
|
||||
size_t input_size;
|
||||
int ci = 1280;
|
||||
int co = 1001;
|
||||
std::string input_path = "./test_data/matmul/matmul_fp32_input.bin";
|
||||
auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size));
|
||||
int ci = shape[0];
|
||||
int co = shape[1];
|
||||
std::string input_path = file_path[0];
|
||||
auto input_data = mindspore::lite::ReadFile(input_path.c_str(), &input_size);
|
||||
if (input_data == nullptr) {
|
||||
MS_LOG(ERROR) << "input_data load error.";
|
||||
return;
|
||||
}
|
||||
size_t weight_size;
|
||||
std::string weight_path = "./test_data/matmul/matmul_fp32_weight.bin";
|
||||
auto weight_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(weight_path.c_str(), &weight_size));
|
||||
std::string weight_path = file_path[1];
|
||||
auto weight_data = mindspore::lite::ReadFile(weight_path.c_str(), &weight_size);
|
||||
if (weight_data == nullptr) {
|
||||
MS_LOG(ERROR) << "weight_data load error.";
|
||||
return;
|
||||
}
|
||||
std::vector<int> input_shape = {1, ci};
|
||||
auto tensor_x_ptr =
|
||||
std::make_unique<lite::tensor::Tensor>(TypeId(kNumberTypeFloat32), input_shape, schema::Format_NC);
|
||||
auto tensor_x_ptr = std::make_unique<lite::tensor::Tensor>(TypeId(fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||
input_shape, schema::Format_NC);
|
||||
auto tensor_x = tensor_x_ptr.get();
|
||||
if (tensor_x == nullptr) {
|
||||
MS_LOG(ERROR) << "tensor_x create error.";
|
||||
|
@ -58,7 +62,8 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) {
|
|||
}
|
||||
|
||||
std::vector<int> w_shape = {co, ci};
|
||||
auto tensor_w_ptr = std::make_unique<lite::tensor::Tensor>(TypeId(kNumberTypeFloat32), w_shape);
|
||||
auto tensor_w_ptr =
|
||||
std::make_unique<lite::tensor::Tensor>(TypeId(fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32), w_shape);
|
||||
auto tensor_w = tensor_w_ptr.get();
|
||||
if (tensor_w == nullptr) {
|
||||
MS_LOG(ERROR) << "tensor_w create error.";
|
||||
|
@ -67,8 +72,8 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) {
|
|||
tensor_w->SetData(weight_data);
|
||||
|
||||
std::vector<int> out_shape = {1, co};
|
||||
auto tensor_out_ptr =
|
||||
std::make_unique<lite::tensor::Tensor>(TypeId(kNumberTypeFloat32), out_shape, schema::Format_NC);
|
||||
auto tensor_out_ptr = std::make_unique<lite::tensor::Tensor>(TypeId(fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
|
||||
out_shape, schema::Format_NC);
|
||||
auto tensor_out = tensor_out_ptr.get();
|
||||
if (tensor_out == nullptr) {
|
||||
MS_LOG(ERROR) << "tensor_out create error.";
|
||||
|
@ -76,16 +81,16 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) {
|
|||
}
|
||||
std::vector<lite::tensor::Tensor *> inputs{tensor_x, tensor_w};
|
||||
std::vector<lite::tensor::Tensor *> outputs{tensor_out};
|
||||
auto arith_kernel_ptr = std::make_unique<kernel::MatMulOpenCLKernel>(nullptr, inputs, outputs, false);
|
||||
auto arith_kernel = arith_kernel_ptr.get();
|
||||
if (arith_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "arith_kernel create error.";
|
||||
auto op_kernel_ptr = std::make_unique<kernel::MatMulOpenCLKernel>(nullptr, inputs, outputs, false);
|
||||
auto op_kernel = op_kernel_ptr.get();
|
||||
if (op_kernel == nullptr) {
|
||||
MS_LOG(ERROR) << "op_kernel create error.";
|
||||
return;
|
||||
}
|
||||
arith_kernel->Init();
|
||||
op_kernel->Init();
|
||||
inputs[0]->MallocData(allocator);
|
||||
|
||||
std::vector<kernel::LiteKernel *> kernels{arith_kernel};
|
||||
std::vector<kernel::LiteKernel *> kernels{op_kernel};
|
||||
|
||||
std::vector<lite::tensor::Tensor *> inputs_g{tensor_x};
|
||||
auto pGraph_ptr = std::make_unique<kernel::SubGraphOpenCLKernel>(inputs_g, outputs, kernels, kernels, kernels);
|
||||
|
@ -97,24 +102,34 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) {
|
|||
pGraph->Init();
|
||||
memcpy(inputs[0]->Data(), input_data, input_size);
|
||||
pGraph->Run();
|
||||
|
||||
size_t output_size;
|
||||
std::string output_path = "./test_data/matmul/matmul_fp32_output.bin";
|
||||
auto correct_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(output_path.c_str(), &output_size));
|
||||
printf("==================output data=================\n");
|
||||
float *output_data = reinterpret_cast<float *>(tensor_out->Data());
|
||||
std::cout << std::endl;
|
||||
int size_n = co;
|
||||
size_n = size_n > 100 ? 100 : size_n;
|
||||
for (int i = 0; i < size_n; i++) {
|
||||
std::cout << output_data[i] << " ";
|
||||
if (fp16) {
|
||||
CompareOutput(tensor_out, file_path[2], static_cast<float16_t>(1e-3), 2e-2);
|
||||
} else {
|
||||
CompareOutput(tensor_out, file_path[2], static_cast<float>(1e-5));
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
// compare
|
||||
CompareOutputData(output_data, correct_data, co, 0.0001);
|
||||
tensor_x->SetData(nullptr);
|
||||
tensor_out->SetData(nullptr);
|
||||
MS_LOG(INFO) << "TestMatMulFp32 passed";
|
||||
}
|
||||
|
||||
TEST_F(TestMatMulOpenCL, MatMulFp32) {
|
||||
int ci = 1280;
|
||||
int co = 1001;
|
||||
std::vector<int> shape = {ci, co};
|
||||
std::vector<std::string> file_path = {"./test_data/matmul/matmul_fp32_input.bin",
|
||||
"./test_data/matmul/matmul_fp32_weight.bin",
|
||||
"./test_data/matmul/matmul_fp32_output.bin"};
|
||||
RunTestCaseMatMul(shape, file_path, false);
|
||||
}
|
||||
|
||||
TEST_F(TestMatMulOpenCL, MatMulFp16) {
|
||||
int ci = 1280;
|
||||
int co = 1001;
|
||||
std::vector<int> shape = {ci, co};
|
||||
std::vector<std::string> file_path = {"./test_data/matmul/matmul_fp16_input.bin",
|
||||
"./test_data/matmul/matmul_fp16_weight.bin",
|
||||
"./test_data/matmul/matmul_fp16_output.bin"};
|
||||
RunTestCaseMatMul(shape, file_path, true);
|
||||
}
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -109,7 +109,7 @@ TEST_F(TestMaxPoolingOpenCL, MaxPool_1_32_512_96) {
|
|||
|
||||
MS_LOG(INFO) << "compare result";
|
||||
std::cout << "compare result" << std::endl;
|
||||
CompareOutput(output_tensor, expect_file);
|
||||
CompareOutput(output_tensor, expect_file, static_cast<float>(1e-5));
|
||||
for (auto tensor : inputs) {
|
||||
delete tensor;
|
||||
}
|
||||
|
|
|
@ -83,7 +83,7 @@ void RunTestCase(std::vector<int> input_shape, std::vector<int> output_shape, st
|
|||
pGraph->Run();
|
||||
|
||||
MS_LOG(INFO) << "compare result";
|
||||
CompareOutput(output_tensor, expect_file);
|
||||
CompareOutput(output_tensor, expect_file, static_cast<float>(1e-5));
|
||||
for (auto tensor : inputs) {
|
||||
delete tensor;
|
||||
}
|
||||
|
|
|
@ -35,34 +35,4 @@ void LoadTestData(void *dst, size_t dst_size, const std::string &file_path) {
|
|||
}
|
||||
}
|
||||
|
||||
void CompareOutput(lite::tensor::Tensor *output_tensor, const std::string &file_path) {
|
||||
float *output_data = reinterpret_cast<float *>(output_tensor->Data());
|
||||
size_t output_size = output_tensor->Size();
|
||||
float *expect_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(file_path.c_str(), &output_size));
|
||||
|
||||
printf("output[0:12]:");
|
||||
for (int i = 0; i < 12; i++) {
|
||||
printf("[%d]:%.3f ", i, output_data[i]);
|
||||
}
|
||||
printf("\n");
|
||||
printf("expect[0:12]:");
|
||||
for (int i = 0; i < 12; i++) {
|
||||
printf("[%d]:%.3f ", i, expect_data[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
constexpr float atol = 1e-5;
|
||||
for (int i = 0; i < output_tensor->ElementsNum(); ++i) {
|
||||
if (std::fabs(output_data[i] - expect_data[i]) > atol) {
|
||||
printf("error at idx[%d] expect=%.3f output=%.3f \n", i, expect_data[i], output_data[i]);
|
||||
printf("error at idx[%d] expect=%.3f output=%.3f \n", i, expect_data[i], output_data[i]);
|
||||
printf("error at idx[%d] expect=%.3f output=%.3f \n", i, expect_data[i], output_data[i]);
|
||||
return;
|
||||
}
|
||||
}
|
||||
printf("compare success!\n");
|
||||
printf("compare success!\n");
|
||||
printf("compare success!\n\n\n");
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -29,7 +29,30 @@ namespace mindspore {
|
|||
|
||||
void LoadTestData(void *dst, size_t dst_size, const std::string &file_path);
|
||||
|
||||
void CompareOutput(lite::tensor::Tensor *output_tensor, const std::string &file_path);
|
||||
template <typename T>
|
||||
void CompareOutput(lite::tensor::Tensor *output_tensor, const std::string &file_path, T atol, float rtol = 1e-5) {
|
||||
T *output_data = reinterpret_cast<T *>(output_tensor->Data());
|
||||
size_t output_size = output_tensor->Size();
|
||||
T *expect_data = reinterpret_cast<T *>(mindspore::lite::ReadFile(file_path.c_str(), &output_size));
|
||||
|
||||
printf("output[0:12]:");
|
||||
for (int i = 0; i < 12; i++) {
|
||||
printf("[%d]:%.3f ", i, output_data[i]);
|
||||
}
|
||||
printf("\n");
|
||||
printf("expect[0:12]:");
|
||||
for (int i = 0; i < 12; i++) {
|
||||
printf("[%d]:%.3f ", i, expect_data[i]);
|
||||
}
|
||||
printf("\n");
|
||||
for (int i = 0; i < output_tensor->ElementsNum(); ++i) {
|
||||
if (std::fabs(output_data[i] - expect_data[i]) > atol + rtol * std::fabs(expect_data[i])) {
|
||||
printf("error at idx[%d] expect=%.3f output=%.3f \n", i, expect_data[i], output_data[i]);
|
||||
return;
|
||||
}
|
||||
}
|
||||
printf("compare success!\n");
|
||||
}
|
||||
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
Loading…
Reference in New Issue