!6308 [MS][GPU][CUDA] NMS_Pass Kernel performance improvement

Merge pull request !6308 from danishnxt/GPU_three
This commit is contained in:
mindspore-ci-bot 2020-09-17 09:00:53 +08:00 committed by Gitee
commit c9fa006b92
3 changed files with 53 additions and 56 deletions

View File

@ -18,7 +18,7 @@
#include <limits>
#include <algorithm>
int NMSRoundUpPower2(int v) {
int NmsRoundUpPower2(int v) {
v--;
v |= v >> 1;
v |= v >> 2;
@ -46,12 +46,12 @@ __global__ void MaskInit(int numSq, bool *row_mask) {
// copy data from input to output array sorted by indices returned from bitonic sort
// flips boxes if asked to, default - false -> if (x1/y1 > x2/y2)
template <typename T>
__global__ void PopulateOutput(T *data_in, T *data_out, int *index_buff, const int num, int box_size_,
__global__ void PopulateOutput(T *data_in, T *data_out, int *index_buff, const int num, int box_size,
bool flip_mode = false) {
for (int box_num = blockIdx.x * blockDim.x + threadIdx.x; box_num < num; box_num += blockDim.x * gridDim.x) {
int correct_index = index_buff[(num - 1) - box_num]; // flip the array around
int correct_arr_start = correct_index * box_size_;
int current_arr_start = box_num * box_size_;
int correct_arr_start = correct_index * box_size;
int current_arr_start = box_num * box_size;
if (flip_mode) { // flip boxes
// check x
if (data_in[correct_arr_start + 0] > data_in[correct_arr_start + 2]) {
@ -79,7 +79,7 @@ __global__ void PopulateOutput(T *data_in, T *data_out, int *index_buff, const i
}
template <typename T>
__inline__ __device__ bool IOUDecision(T *output, int box_A_ix, int box_B_ix, int box_A_start, int box_B_start, T *area,
__inline__ __device__ bool IouDecision(T *output, int box_A_ix, int box_B_ix, int box_A_start, int box_B_start,
float IOU_value) {
T x_1 = max(output[box_A_start + 0], output[box_B_start + 0]);
T y_1 = max(output[box_A_start + 1], output[box_B_start + 1]);
@ -87,37 +87,37 @@ __inline__ __device__ bool IOUDecision(T *output, int box_A_ix, int box_B_ix, in
T y_2 = min(output[box_A_start + 3], output[box_B_start + 3]);
T width = max(x_2 - x_1, T(0)); // in case of no overlap
T height = max(y_2 - y_1, T(0));
T combined_area = area[box_A_ix] + area[box_B_ix];
// return decision to keep or remove box
T area1 = (output[box_A_start + 2] - output[box_A_start + 0]) * (output[box_A_start + 3] - output[box_A_start + 1]);
T area2 = (output[box_B_start + 2] - output[box_B_start + 0]) * (output[box_B_start + 3] - output[box_B_start + 1]);
T combined_area = area1 + area2;
return !(((width * height) / (combined_area - (width * height))) > IOU_value);
}
// calculate areas for boxes -> sorted by output boxes
// populated return mask (init to all true) and return index array
template <typename T>
__global__ void Preprocess(const int num, int *sel_idx, bool *sel_boxes, T *area, T *output, int box_size_) {
__global__ void Preprocess(const int num, int *sel_idx, bool *sel_boxes, T *output, int box_size) {
for (int box_num = blockIdx.x * blockDim.x + threadIdx.x; box_num < num; box_num += blockDim.x * gridDim.x) {
sel_idx[box_num] = box_num;
sel_boxes[box_num] = true;
area[box_num] = (output[(box_num * box_size_) + 2] - output[(box_num * box_size_) + 0]) *
(output[(box_num * box_size_) + 3] - output[(box_num * box_size_) + 1]);
}
}
// Run parallel NMS pass
// Every box updates it's own mask in row_mask in sep threads
// Every position in the row_mask array is updated wit correct IOU decision after being init to all True
template <typename T>
__global__ void NMSPass(const int num, const float IOU_value, T *output, T *area, bool *sel_boxes, int box_size_,
__global__ void NmsPass(const int num, const float IOU_value, T *output, bool *sel_boxes, int box_size,
bool *row_mask) {
int box_i_start_index, box_j_start_index; // actual input data indexing
int mask_offset = 0;
for (int box_i = blockIdx.x * blockDim.x + threadIdx.x; box_i < num - 1; box_i += blockDim.x * gridDim.x) {
mask_offset = box_i * num;
box_i_start_index = box_i * box_size_; // adjust starting index
for (int box_j = box_i + 1; box_j < num; box_j++) {
box_j_start_index = box_j * box_size_;
row_mask[mask_offset + box_j] =
IOUDecision(output, box_i, box_j, box_i_start_index, box_j_start_index, area, IOU_value);
int box_i, box_j, box_i_start_index, box_j_start_index; // actual input data indexing
for (int mask_index = blockIdx.x * blockDim.x + threadIdx.x; mask_index < num * num;
mask_index += blockDim.x * gridDim.x) {
box_i = mask_index / num; // row in 2d row_mask array
box_j = mask_index % num; // col in 2d row_mask array
if (box_j > box_i) { // skip when box_j index lower/equal to box_i - will remain true
box_i_start_index = box_i * box_size; // adjust starting indices
box_j_start_index = box_j * box_size;
row_mask[mask_index] = IouDecision(output, box_i, box_j, box_i_start_index, box_j_start_index, IOU_value);
}
}
}
@ -139,10 +139,10 @@ __global__ void ReducePass(const int num, bool *sel_boxes, bool *row_mask) {
// Sorting function based on BitonicSort from TopK kernel
template <typename T>
__global__ void NMS_BitonicSortByKeyKernel(const int outer, const int inner, const int ceil_power2, T *input,
T *data_buff, int *index_buff, int box_size_) {
__global__ void NmsBitonicSortByKeyKernel(const int outer, const int inner, const int ceil_power2, T *input,
T *data_buff, int *index_buff, int box_size) {
for (int i = threadIdx.x; i < ceil_power2; i += blockDim.x) {
data_buff[i] = (i < inner) ? input[(i * box_size_) + 4] : std::numeric_limits<T>::max();
data_buff[i] = (i < inner) ? input[(i * box_size) + 4] : std::numeric_limits<T>::max();
index_buff[i] = i;
}
__syncthreads();
@ -171,37 +171,38 @@ __global__ void NMS_BitonicSortByKeyKernel(const int outer, const int inner, con
}
template <typename T>
void CalPreprocess(const int num, int *sel_idx, bool *sel_boxes, T *area, T *input, T *output, int *index_buff,
int box_size_, bool *row_mask, cudaStream_t cuda_stream) {
void CalPreprocess(const int num, int *sel_idx, bool *sel_boxes, T *input, T *output, int *index_buff, int box_size,
bool *row_mask, cudaStream_t cuda_stream) {
int total_val = num * num;
MaskInit<<<GET_BLOCKS(total_val), GET_THREADS, 0, cuda_stream>>>(total_val, row_mask);
// default for flipping boxes -> false (provision available to flip if API updated)
PopulateOutput<<<GET_BLOCKS(num), GET_THREADS, 0, cuda_stream>>>(input, output, index_buff, num, box_size_, false);
Preprocess<<<GET_BLOCKS(num), GET_THREADS, 0, cuda_stream>>>(num, sel_idx, sel_boxes, area, output, box_size_);
PopulateOutput<<<GET_BLOCKS(num), GET_THREADS, 0, cuda_stream>>>(input, output, index_buff, num, box_size, false);
Preprocess<<<GET_BLOCKS(num), GET_THREADS, 0, cuda_stream>>>(num, sel_idx, sel_boxes, output, box_size);
}
template <typename T>
void CalSort(const int &num, T *data_in, T *data_out, int *index_buff, T *data_buff, int box_size_,
void CalSort(const int &num, T *data_in, T *data_out, int *index_buff, T *data_buff, int box_size,
cudaStream_t stream) {
int ceil_p_2 = NMSRoundUpPower2(num);
int ceil_p_2 = NmsRoundUpPower2(num);
int thread = std::min(ceil_p_2, GET_THREADS);
NMS_BitonicSortByKeyKernel<<<1, thread, 0, stream>>>(1, num, ceil_p_2, data_in, data_buff, index_buff, box_size_);
NmsBitonicSortByKeyKernel<<<1, thread, 0, stream>>>(1, num, ceil_p_2, data_in, data_buff, index_buff, box_size);
}
template <typename T>
void CalNMS(const int num, const float IOU_value, T *output, T *area, bool *sel_boxes, int box_size_, bool *row_mask,
void CalNms(const int num, const float IOU_value, T *output, bool *sel_boxes, int box_size, bool *row_mask,
cudaStream_t cuda_stream) {
NMSPass<<<GET_BLOCKS(num), GET_THREADS, 0, cuda_stream>>>(num, IOU_value, output, area, sel_boxes, box_size_,
row_mask);
// run kernel for every position in row_mask array = (num * num) size
int row_mask_size = num * num;
NmsPass<<<GET_BLOCKS(row_mask_size), GET_THREADS, 0, cuda_stream>>>(num, IOU_value, output, sel_boxes, box_size,
row_mask);
ReducePass<<<1, GET_THREADS, 0, cuda_stream>>>(num, sel_boxes, row_mask);
}
template void CalSort<float>(const int &inner, float *data_in, float *data_out, int *index_buff, float *data_buff,
int box_size_, cudaStream_t stream);
int box_size, cudaStream_t stream);
template void CalPreprocess<float>(const int num, int *sel_idx, bool *sel_boxes, float *area, float *input,
float *output, int *index_buff, int box_size_, bool *row_mask,
cudaStream_t cuda_stream);
template void CalPreprocess<float>(const int num, int *sel_idx, bool *sel_boxes, float *input, float *output,
int *index_buff, int box_size, bool *row_mask, cudaStream_t cuda_stream);
template void CalNMS<float>(const int num, const float IOU_value, float *output, float *area, bool *sel_boxes,
int box_size_, bool *row_mask, cudaStream_t cuda_stream);
template void CalNms<float>(const int num, const float IOU_value, float *output, bool *sel_boxes, int box_size,
bool *row_mask, cudaStream_t cuda_stream);

View File

@ -24,13 +24,13 @@ void CalSort(const int &inner, T *data_in, T *data_out, int *index_buff, T *data
cudaStream_t stream);
template <typename T>
void CalPreprocess(const int num, int *sel_idx, bool *sel_boxes, T *area, T *input, T *output, int *index_buff,
int box_size_, bool *row_mask, cudaStream_t cuda_stream);
void CalPreprocess(const int num, int *sel_idx, bool *sel_boxes, T *input, T *output, int *index_buff, int box_size_,
bool *row_mask, cudaStream_t cuda_stream);
template <typename T>
void CalNMS(const int num, const float IOU_value, T *output, T *area, bool *sel_boxes, int box_size_, bool *row_mask,
void CalNms(const int num, const float IOU_value, T *output, bool *sel_boxes, int box_size_, bool *row_mask,
cudaStream_t cuda_stream);
int NMSRoundUpPower2(int v);
int NmsRoundUpPower2(int v);
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_NMS_WITH_MASK_IMPL_H_

View File

@ -41,19 +41,17 @@ class NMSWithMaskGpuFwdKernel : public GpuKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *input = GetDeviceAddress<T>(inputs, 0);
T *area = GetDeviceAddress<T>(workspace, 0);
T *data_buff = GetDeviceAddress<T>(workspace, 1);
int *index_buff = GetDeviceAddress<int>(workspace, 2);
bool *row_mask = GetDeviceAddress<bool>(workspace, 3);
T *data_buff = GetDeviceAddress<T>(workspace, 0);
int *index_buff = GetDeviceAddress<int>(workspace, 1);
bool *row_mask = GetDeviceAddress<bool>(workspace, 2);
T *output = GetDeviceAddress<T>(outputs, 0);
int *sel_idx = GetDeviceAddress<int>(outputs, 1);
bool *sel_boxes = GetDeviceAddress<bool>(outputs, 2);
CalSort(num_input_, input, output, index_buff, data_buff, box_size_, reinterpret_cast<cudaStream_t>(stream_ptr));
CalPreprocess(num_input_, sel_idx, sel_boxes, area, input, output, index_buff, box_size_, row_mask,
CalPreprocess(num_input_, sel_idx, sel_boxes, input, output, index_buff, box_size_, row_mask,
reinterpret_cast<cudaStream_t>(stream_ptr));
CalNMS(num_input_, iou_value_, output, area, sel_boxes, box_size_, row_mask,
reinterpret_cast<cudaStream_t>(stream_ptr));
CalNms(num_input_, iou_value_, output, sel_boxes, box_size_, row_mask, reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
@ -80,13 +78,12 @@ class NMSWithMaskGpuFwdKernel : public GpuKernel {
}
num_input_ = input_shape[0]; // Get N value in [N,5] data
ceil_power_2 = NMSRoundUpPower2(num_input_);
ceil_power_2 = NmsRoundUpPower2(num_input_);
input_size_ = num_input_ * sizeof(T) * box_size_; // 5 values per bbox
output_size_ = (input_size_) + (num_input_ * sizeof(int)) + (num_input_ * sizeof(bool));
workspace_size_ = num_input_ * sizeof(int); // storing areas
workspace_size_ += ceil_power_2 * (sizeof(T) + sizeof(int)); // sorting buffers
workspace_size_ = ceil_power_2 * (sizeof(T) + sizeof(int)); // sorting buffers
workspace_size_ += (num_input_ * num_input_ * sizeof(bool)); // Row mask - NMS
InitSizeLists();
@ -102,7 +99,6 @@ class NMSWithMaskGpuFwdKernel : public GpuKernel {
output_size_list_.push_back(num_input_ * sizeof(bool));
// N sized workspace arrs
workspace_size_list_.push_back(num_input_ * sizeof(T)); // area list
workspace_size_list_.push_back(ceil_power_2 * sizeof(T)); // data buff
workspace_size_list_.push_back(ceil_power_2 * sizeof(int)); // index buff
workspace_size_list_.push_back(num_input_ * num_input_ * sizeof(bool)); // mask list