forked from mindspore-Ecosystem/mindspore
commit
c9d6dc7339
|
@ -70,7 +70,7 @@
|
|||
* add optimized convolution1X1/3X3/depthwise/convolution_transposed for OpenCL.
|
||||
* Tool & example
|
||||
* Add benchmark and TimeProfile tools.
|
||||
* Add image classification and object detection Android Demo.
|
||||
* Add image classification Android Demo.
|
||||
|
||||
## Bugfixes
|
||||
* Models
|
||||
|
|
|
@ -35,7 +35,7 @@ For more details please check out our [MindSpore Lite Architecture Guide](https:
|
|||
|
||||
The MindSpore team provides a series of pre-training models used for image classification, object detection. You can use these pre-trained models in your application.
|
||||
|
||||
The pre-trained models provided by MindSpore include: [Image Classification](https://download.mindspore.cn/model_zoo/official/lite/) and [Object Detection](https://download.mindspore.cn/model_zoo/official/lite/). More models will be provided in the feature.
|
||||
The pre-trained model provided by MindSpore: [Image Classification](https://download.mindspore.cn/model_zoo/official/lite/). More models will be provided in the feature.
|
||||
|
||||
MindSpore allows you to retrain pre-trained models to perform other tasks.
|
||||
|
||||
|
@ -53,7 +53,7 @@ For more details please check out our [MindSpore Lite Architecture Guide](https:
|
|||
|
||||
Load the model and perform inference. [Inference](https://www.mindspore.cn/lite/tutorial/en/master/use/runtime.html) is the process of running input data through the model to get output.
|
||||
|
||||
MindSpore provides a series of pre-trained models that can be deployed on mobile device [example](#TODO).
|
||||
MindSpore provides pre-trained model that can be deployed on mobile device [example](https://www.mindspore.cn/lite/examples/en).
|
||||
|
||||
## MindSpore Lite benchmark test result
|
||||
Base on MindSpore r0.7, we test a couple of networks on HUAWEI Mate30 (Hisilicon Kirin990) mobile phone, and get the test results below for your reference.
|
||||
|
|
|
@ -43,7 +43,7 @@ MindSpore Lite是MindSpore推出的端云协同的、轻量化、高性能AI推
|
|||
|
||||
MindSpore团队提供了一系列预训练模型,用于解决图像分类、目标检测等场景的学习问题。可以在您的应用程序中使用这些预训练模型对应的终端模型。
|
||||
|
||||
MindSpore提供的预训练模型包括:[图像分类(Image Classification)](https://download.mindspore.cn/model_zoo/official/lite/)和[目标检测(Object Detection)](https://download.mindspore.cn/model_zoo/official/lite/)。后续MindSpore团队会增加更多的预置模型。
|
||||
MindSpore提供的预训练模型:[图像分类(Image Classification)](https://download.mindspore.cn/model_zoo/official/lite/)。后续MindSpore团队会增加更多的预置模型。
|
||||
|
||||
MindSpore允许您重新训练预训练模型,以执行其他任务。比如:使用预训练的图像分类模型,可以重新训练来识别新的图像类型。
|
||||
|
||||
|
@ -63,15 +63,15 @@ MindSpore Lite是MindSpore推出的端云协同的、轻量化、高性能AI推
|
|||
|
||||
主要完成模型推理工作,即加载模型,完成模型相关的所有计算。[推理](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/runtime.html)是通过模型运行输入数据,获取预测的过程。
|
||||
|
||||
MindSpore提供了一系列预训练模型部署在智能终端的[样例](#TODO)。
|
||||
MindSpore提供了预训练模型部署在智能终端的[样例](https://www.mindspore.cn/lite/examples)。
|
||||
|
||||
## MindSpore Lite性能参考数据
|
||||
我们在HUAWEI Mate30(Hisilicon Kirin990)手机上,基于MindSpore r0.7,测试了一组端侧常见网络的性能数据,供您参考:
|
||||
|
||||
| 网络 | 线程数 | 平均推理时间(毫秒) |
|
||||
| ------------------- | ------ | ------------------ |
|
||||
| basic_squeezenet | 4 | 9.10 |
|
||||
| inception_v3 | 4 | 69.361 |
|
||||
| mobilenet_v1_10_224 | 4 | 7.137 |
|
||||
| mobilenet_v2_10_224 | 4 | 5.569 |
|
||||
| resnet_v2_50 | 4 | 48.691 |
|
||||
| 网络 | 线程数 | 平均推理时间(毫秒) |
|
||||
| ------------------- | ------ | ------------------ |
|
||||
| basic_squeezenet | 4 | 9.10 |
|
||||
| inception_v3 | 4 | 69.361 |
|
||||
| mobilenet_v1_10_224 | 4 | 7.137 |
|
||||
| mobilenet_v2_10_224 | 4 | 5.569 |
|
||||
| resnet_v2_50 | 4 | 48.691 |
|
||||
|
|
Loading…
Reference in New Issue