minddata support voc

This commit is contained in:
xiefangqi 2020-05-09 15:38:47 +08:00
parent 25b2424f9b
commit c937bad53f
30 changed files with 774 additions and 4474 deletions

View File

@ -0,0 +1,10 @@
set(tinyxml2_CXXFLAGS "-D_FORTIFY_SOURCE=2 -O2 -Wno-unused-result")
set(tinyxml2_CFLAGS "-D_FORTIFY_SOURCE=2 -O2")
mindspore_add_pkg(tinyxml2
VER 8.0.0
LIBS tinyxml2
URL https://github.com/leethomason/tinyxml2/archive/8.0.0.tar.gz
CMAKE_OPTION -DCMAKE_BUILD_TYPE=Release
MD5 5dc535c8b34ee621fe2128f072d275b5)
include_directories(${tinyxml2_INC})
add_library(mindspore::tinyxml2 ALIAS tinyxml2::tinyxml2)

View File

@ -56,6 +56,7 @@ if (ENABLE_MINDDATA)
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/libtiff.cmake)
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/opencv.cmake)
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/sqlite.cmake)
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/tinyxml2.cmake)
endif()
include(${CMAKE_SOURCE_DIR}/cmake/external_libs/gtest.cmake)

View File

@ -39,6 +39,7 @@ if (CMAKE_SYSTEM_NAME MATCHES "Windows")
set(opencv_LIBPATH ${opencv_LIBPATH}/../bin/)
set(jpeg_turbo_LIBPATH ${jpeg_turbo_LIBPATH}/../bin/)
set(sqlite_LIBPATH ${sqlite_LIBPATH}/../bin/)
set(tinyxml2_LIBPATH ${tinyxml2_LIBPATH}/../bin/)
else ()
set(INSTALL_LIB_DIR "lib")
endif ()
@ -82,6 +83,15 @@ if (ENABLE_MINDDATA)
DESTINATION ${INSTALL_LIB_DIR}
COMPONENT mindspore
)
file(GLOB_RECURSE TINYXML2_LIB_LIST
${tinyxml2_LIBPATH}/libtinyxml2*
)
install(
FILES ${TINYXML2_LIB_LIST}
DESTINATION ${INSTALL_LIB_DIR}
COMPONENT mindspore
)
endif ()
if (ENABLE_CPU)

View File

@ -90,7 +90,7 @@ else()
target_link_libraries(_c_dataengine PRIVATE mindspore::pybind11_module -ldl mindspore::protobuf ${SECUREC_LIBRARY})
endif()
target_link_libraries(_c_dataengine PUBLIC mindspore::jpeg_turbo mindspore::opencv_core mindspore::opencv_imgcodecs
mindspore::opencv_imgproc)
mindspore::opencv_imgproc mindspore::tinyxml2)
if (ENABLE_GPUQUE)
target_link_libraries(_c_dataengine PRIVATE gpu_queue
${CUDNN_PATH}/lib64/libcudnn.so

View File

@ -898,6 +898,8 @@ Status DEPipeline::ParseVOCOp(const py::dict &args, std::shared_ptr<DatasetOp> *
std::shared_ptr<VOCOp::Builder> builder = std::make_shared<VOCOp::Builder>();
(void)builder->SetDir(ToString(args["dataset_dir"]));
(void)builder->SetTask(ToString(args["task"]));
(void)builder->SetMode(ToString(args["mode"]));
for (auto arg : args) {
std::string key = py::str(arg.first);
py::handle value = arg.second;
@ -912,6 +914,8 @@ Status DEPipeline::ParseVOCOp(const py::dict &args, std::shared_ptr<DatasetOp> *
(void)builder->SetSampler(std::move(sampler));
} else if (key == "decode") {
(void)builder->SetDecode(ToBool(value));
} else if (key == "class_indexing") {
(void)builder->SetClassIndex(ToStringMap(value));
}
}
}

View File

@ -55,6 +55,7 @@
#include "dataset/engine/datasetops/source/tf_reader_op.h"
#include "dataset/engine/jagged_connector.h"
#include "dataset/engine/datasetops/source/text_file_op.h"
#include "dataset/engine/datasetops/source/voc_op.h"
#include "dataset/kernels/data/to_float16_op.h"
#include "dataset/util/random.h"
#include "mindrecord/include/shard_operator.h"
@ -193,6 +194,13 @@ void bindDatasetOps(py::module *m) {
THROW_IF_ERROR(TextFileOp::CountAllFileRows(filenames, &count));
return count;
});
(void)py::class_<VOCOp, DatasetOp, std::shared_ptr<VOCOp>>(*m, "VOCOp")
.def_static("get_class_indexing", [](const std::string &dir, const std::string &task_type,
const std::string &task_mode, const py::dict &dict, int64_t numSamples) {
std::map<std::string, int32_t> output_class_indexing;
THROW_IF_ERROR(VOCOp::GetClassIndexing(dir, task_type, task_mode, dict, numSamples, &output_class_indexing));
return output_class_indexing;
});
}
void bindTensor(py::module *m) {
(void)py::class_<GlobalContext>(*m, "GlobalContext")

View File

@ -15,8 +15,10 @@
*/
#include "dataset/engine/datasetops/source/voc_op.h"
#include <algorithm>
#include <fstream>
#include <iomanip>
#include "./tinyxml2.h"
#include "common/utils.h"
#include "dataset/core/config_manager.h"
#include "dataset/core/tensor_shape.h"
@ -24,8 +26,24 @@
#include "dataset/engine/db_connector.h"
#include "dataset/engine/execution_tree.h"
using tinyxml2::XMLDocument;
using tinyxml2::XMLElement;
using tinyxml2::XMLError;
namespace mindspore {
namespace dataset {
const char kColumnImage[] = "image";
const char kColumnTarget[] = "target";
const char kColumnAnnotation[] = "annotation";
const char kJPEGImagesFolder[] = "/JPEGImages/";
const char kSegmentationClassFolder[] = "/SegmentationClass/";
const char kAnnotationsFolder[] = "/Annotations/";
const char kImageSetsSegmentation[] = "/ImageSets/Segmentation/";
const char kImageSetsMain[] = "/ImageSets/Main/";
const char kImageExtension[] = ".jpg";
const char kSegmentationExtension[] = ".png";
const char kAnnotationExtension[] = ".xml";
const char kImageSetsExtension[] = ".txt";
VOCOp::Builder::Builder() : builder_decode_(false), builder_num_samples_(0), builder_sampler_(nullptr) {
std::shared_ptr<ConfigManager> cfg = GlobalContext::config_manager();
builder_num_workers_ = cfg->num_parallel_workers();
@ -39,13 +57,21 @@ Status VOCOp::Builder::Build(std::shared_ptr<VOCOp> *ptr) {
builder_sampler_ = std::make_shared<SequentialSampler>();
}
builder_schema_ = std::make_unique<DataSchema>();
RETURN_IF_NOT_OK(
builder_schema_->AddColumn(ColDescriptor("image", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_IF_NOT_OK(
builder_schema_->AddColumn(ColDescriptor("target", DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
*ptr = std::make_shared<VOCOp>(builder_num_workers_, builder_rows_per_buffer_, builder_dir_,
builder_op_connector_size_, builder_num_samples_, builder_decode_,
std::move(builder_schema_), std::move(builder_sampler_));
if (builder_task_type_ == TaskType::Segmentation) {
RETURN_IF_NOT_OK(builder_schema_->AddColumn(
ColDescriptor(std::string(kColumnImage), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_IF_NOT_OK(builder_schema_->AddColumn(
ColDescriptor(std::string(kColumnTarget), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
} else if (builder_task_type_ == TaskType::Detection) {
RETURN_IF_NOT_OK(builder_schema_->AddColumn(
ColDescriptor(std::string(kColumnImage), DataType(DataType::DE_UINT8), TensorImpl::kFlexible, 1)));
RETURN_IF_NOT_OK(builder_schema_->AddColumn(
ColDescriptor(std::string(kColumnAnnotation), DataType(DataType::DE_UINT32), TensorImpl::kFlexible, 1)));
}
*ptr = std::make_shared<VOCOp>(builder_task_type_, builder_task_mode_, builder_dir_, builder_labels_to_read_,
builder_num_workers_, builder_rows_per_buffer_, builder_op_connector_size_,
builder_num_samples_, builder_decode_, std::move(builder_schema_),
std::move(builder_sampler_));
return Status::OK();
}
@ -58,8 +84,9 @@ Status VOCOp::Builder::SanityCheck() {
return err_msg.empty() ? Status::OK() : Status(StatusCode::kUnexpectedError, __LINE__, __FILE__, err_msg);
}
VOCOp::VOCOp(int32_t num_workers, int32_t rows_per_buffer, const std::string &folder_path, int32_t queue_size,
int64_t num_samples, bool decode, std::unique_ptr<DataSchema> data_schema,
VOCOp::VOCOp(const TaskType &task_type, const std::string &task_mode, const std::string &folder_path,
const std::map<std::string, int32_t> &class_index, int32_t num_workers, int32_t rows_per_buffer,
int32_t queue_size, int64_t num_samples, bool decode, std::unique_ptr<DataSchema> data_schema,
std::shared_ptr<Sampler> sampler)
: ParallelOp(num_workers, queue_size),
decode_(decode),
@ -67,7 +94,10 @@ VOCOp::VOCOp(int32_t num_workers, int32_t rows_per_buffer, const std::string &fo
buf_cnt_(0),
num_rows_(0),
num_samples_(num_samples),
task_type_(task_type),
task_mode_(task_mode),
folder_path_(folder_path),
class_index_(class_index),
rows_per_buffer_(rows_per_buffer),
sampler_(std::move(sampler)),
data_schema_(std::move(data_schema)) {
@ -167,12 +197,25 @@ Status VOCOp::GetNumSamples(int64_t *num) const {
}
Status VOCOp::LoadTensorRow(const std::string &image_id, TensorRow *trow) {
std::shared_ptr<Tensor> image, target;
const std::string kImageDir = folder_path_ + "/JPEGImages/" + image_id + ".jpg";
const std::string kTargetDir = folder_path_ + "/SegmentationClass/" + image_id + ".png";
RETURN_IF_NOT_OK(ReadImageToTensor(kImageDir, data_schema_->column(0), &image));
RETURN_IF_NOT_OK(ReadImageToTensor(kTargetDir, data_schema_->column(1), &target));
(*trow) = {std::move(image), std::move(target)};
if (task_type_ == TaskType::Segmentation) {
std::shared_ptr<Tensor> image, target;
const std::string kImageFile =
folder_path_ + std::string(kJPEGImagesFolder) + image_id + std::string(kImageExtension);
const std::string kTargetFile =
folder_path_ + std::string(kSegmentationClassFolder) + image_id + std::string(kSegmentationExtension);
RETURN_IF_NOT_OK(ReadImageToTensor(kImageFile, data_schema_->column(0), &image));
RETURN_IF_NOT_OK(ReadImageToTensor(kTargetFile, data_schema_->column(1), &target));
(*trow) = {std::move(image), std::move(target)};
} else if (task_type_ == TaskType::Detection) {
std::shared_ptr<Tensor> image, annotation;
const std::string kImageFile =
folder_path_ + std::string(kJPEGImagesFolder) + image_id + std::string(kImageExtension);
const std::string kAnnotationFile =
folder_path_ + std::string(kAnnotationsFolder) + image_id + std::string(kAnnotationExtension);
RETURN_IF_NOT_OK(ReadImageToTensor(kImageFile, data_schema_->column(0), &image));
RETURN_IF_NOT_OK(ReadAnnotationToTensor(kAnnotationFile, data_schema_->column(1), &annotation));
(*trow) = {std::move(image), std::move(annotation)};
}
return Status::OK();
}
@ -213,8 +256,13 @@ Status VOCOp::WorkerEntry(int32_t worker_id) {
}
Status VOCOp::ParseImageIds() {
const std::string kImageSets = "/ImageSets/Segmentation/train.txt";
std::string image_sets_file = folder_path_ + kImageSets;
std::string image_sets_file;
if (task_type_ == TaskType::Segmentation) {
image_sets_file =
folder_path_ + std::string(kImageSetsSegmentation) + task_mode_ + std::string(kImageSetsExtension);
} else if (task_type_ == TaskType::Detection) {
image_sets_file = folder_path_ + std::string(kImageSetsMain) + task_mode_ + std::string(kImageSetsExtension);
}
std::ifstream in_file;
in_file.open(image_sets_file);
if (in_file.fail()) {
@ -231,6 +279,84 @@ Status VOCOp::ParseImageIds() {
return Status::OK();
}
Status VOCOp::ParseAnnotationIds() {
std::vector<std::string> new_image_ids;
for (auto id : image_ids_) {
const std::string kAnnotationName =
folder_path_ + std::string(kAnnotationsFolder) + id + std::string(kAnnotationExtension);
RETURN_IF_NOT_OK(ParseAnnotationBbox(kAnnotationName));
if (label_map_.find(kAnnotationName) != label_map_.end()) {
new_image_ids.push_back(id);
}
}
if (image_ids_.size() != new_image_ids.size()) {
image_ids_.clear();
image_ids_.insert(image_ids_.end(), new_image_ids.begin(), new_image_ids.end());
}
uint32_t count = 0;
for (auto &label : label_index_) {
label.second = count++;
}
num_rows_ = image_ids_.size();
num_samples_ = (num_samples_ == 0 || num_samples_ > num_rows_) ? num_rows_ : num_samples_;
return Status::OK();
}
Status VOCOp::ParseAnnotationBbox(const std::string &path) {
if (!Path(path).Exists()) {
RETURN_STATUS_UNEXPECTED("File is not found : " + path);
}
Bbox bbox;
XMLDocument doc;
XMLError e = doc.LoadFile(common::SafeCStr(path));
if (e != XMLError::XML_SUCCESS) {
RETURN_STATUS_UNEXPECTED("Xml load failed");
}
XMLElement *root = doc.RootElement();
if (root == nullptr) {
RETURN_STATUS_UNEXPECTED("Xml load root element error");
}
XMLElement *object = root->FirstChildElement("object");
if (object == nullptr) {
RETURN_STATUS_UNEXPECTED("No object find in " + path);
}
while (object != nullptr) {
std::string label_name;
uint32_t xmin = 0, ymin = 0, xmax = 0, ymax = 0, truncated = 0, difficult = 0;
XMLElement *name_node = object->FirstChildElement("name");
if (name_node != nullptr) label_name = name_node->GetText();
XMLElement *truncated_node = object->FirstChildElement("truncated");
if (truncated_node != nullptr) truncated = truncated_node->UnsignedText();
XMLElement *difficult_node = object->FirstChildElement("difficult");
if (difficult_node != nullptr) difficult = difficult_node->UnsignedText();
XMLElement *bbox_node = object->FirstChildElement("bndbox");
if (bbox_node != nullptr) {
XMLElement *xmin_node = bbox_node->FirstChildElement("xmin");
if (xmin_node != nullptr) xmin = xmin_node->UnsignedText();
XMLElement *ymin_node = bbox_node->FirstChildElement("ymin");
if (ymin_node != nullptr) ymin = ymin_node->UnsignedText();
XMLElement *xmax_node = bbox_node->FirstChildElement("xmax");
if (xmax_node != nullptr) xmax = xmax_node->UnsignedText();
XMLElement *ymax_node = bbox_node->FirstChildElement("ymax");
if (ymax_node != nullptr) ymax = ymax_node->UnsignedText();
} else {
RETURN_STATUS_UNEXPECTED("bndbox dismatch in " + path);
}
if (label_name != "" && (class_index_.empty() || class_index_.find(label_name) != class_index_.end()) && xmin > 0 &&
ymin > 0 && xmax > xmin && ymax > ymin) {
std::vector<uint32_t> bbox_list = {xmin, ymin, xmax - xmin, ymax - ymin, truncated, difficult};
bbox.emplace_back(std::make_pair(label_name, bbox_list));
label_index_[label_name] = 0;
}
object = object->NextSiblingElement("object");
}
if (bbox.size() > 0) label_map_[path] = bbox;
return Status::OK();
}
Status VOCOp::InitSampler() {
RETURN_IF_NOT_OK(sampler_->HandshakeRandomAccessOp(this));
return Status::OK();
@ -245,6 +371,9 @@ Status VOCOp::LaunchThreadsAndInitOp() {
RETURN_IF_NOT_OK(tree_->LaunchWorkers(num_workers_, std::bind(&VOCOp::WorkerEntry, this, std::placeholders::_1)));
TaskManager::FindMe()->Post();
RETURN_IF_NOT_OK(this->ParseImageIds());
if (task_type_ == TaskType::Detection) {
RETURN_IF_NOT_OK(this->ParseAnnotationIds());
}
RETURN_IF_NOT_OK(this->InitSampler());
return Status::OK();
}
@ -270,6 +399,34 @@ Status VOCOp::ReadImageToTensor(const std::string &path, const ColDescriptor &co
return Status::OK();
}
Status VOCOp::ReadAnnotationToTensor(const std::string &path, const ColDescriptor &col,
std::shared_ptr<Tensor> *tensor) {
Bbox bbox_info = label_map_[path];
std::vector<uint32_t> bbox_row;
dsize_t bbox_column_num = 0, bbox_num = 0;
for (auto box : bbox_info) {
if (label_index_.find(box.first) != label_index_.end()) {
std::vector<uint32_t> bbox;
if (class_index_.find(box.first) != class_index_.end()) {
bbox.emplace_back(class_index_[box.first]);
} else {
bbox.emplace_back(label_index_[box.first]);
}
bbox.insert(bbox.end(), box.second.begin(), box.second.end());
bbox_row.insert(bbox_row.end(), bbox.begin(), bbox.end());
if (bbox_column_num == 0) {
bbox_column_num = static_cast<dsize_t>(bbox.size());
}
bbox_num++;
}
}
std::vector<dsize_t> bbox_dim = {bbox_num, bbox_column_num};
RETURN_IF_NOT_OK(Tensor::CreateTensor(tensor, col.tensorImpl(), TensorShape(bbox_dim), col.type(),
reinterpret_cast<unsigned char *>(&bbox_row[0])));
return Status::OK();
}
// Derived from RandomAccessOp
Status VOCOp::GetNumRowsInDataset(int64_t *num) const {
if (num == nullptr || num_rows_ == 0) {
@ -280,5 +437,30 @@ Status VOCOp::GetNumRowsInDataset(int64_t *num) const {
(*num) = num_rows_;
return Status::OK();
}
Status VOCOp::GetClassIndexing(const std::string &dir, const std::string &task_type, const std::string &task_mode,
const py::dict &dict, int64_t numSamples,
std::map<std::string, int32_t> *output_class_indexing) {
std::map<std::string, int32_t> input_class_indexing;
for (auto p : dict) {
(void)input_class_indexing.insert(std::pair<std::string, int32_t>(py::reinterpret_borrow<py::str>(p.first),
py::reinterpret_borrow<py::int_>(p.second)));
}
if (!input_class_indexing.empty()) {
*output_class_indexing = input_class_indexing;
} else {
std::shared_ptr<VOCOp> op;
RETURN_IF_NOT_OK(
Builder().SetDir(dir).SetTask(task_type).SetMode(task_mode).SetClassIndex(input_class_indexing).Build(&op));
RETURN_IF_NOT_OK(op->ParseImageIds());
RETURN_IF_NOT_OK(op->ParseAnnotationIds());
for (const auto label : op->label_index_) {
(*output_class_indexing).insert(std::make_pair(label.first, label.second));
}
}
return Status::OK();
}
} // namespace dataset
} // namespace mindspore

View File

@ -16,6 +16,7 @@
#ifndef DATASET_ENGINE_DATASETOPS_SOURCE_VOC_OP_H_
#define DATASET_ENGINE_DATASETOPS_SOURCE_VOC_OP_H_
#include <map>
#include <memory>
#include <string>
#include <utility>
@ -39,8 +40,12 @@ namespace dataset {
template <typename T>
class Queue;
using Bbox = std::vector<std::pair<std::string, std::vector<uint32_t>>>;
class VOCOp : public ParallelOp, public RandomAccessOp {
public:
enum class TaskType { Segmentation = 0, Detection = 1 };
class Builder {
public:
// Constructor for Builder class of ImageFolderOp
@ -59,6 +64,34 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
return *this;
}
// Setter method.
// @param const std::map<std::string, int32_t> &map - a class name to label map
// @return Builder setter method returns reference to the builder.
Builder &SetClassIndex(const std::map<std::string, int32_t> &map) {
builder_labels_to_read_ = map;
return *this;
}
// Setter method.
// @param const std::string & task_type
// @return Builder setter method returns reference to the builder.
Builder &SetTask(const std::string &task_type) {
if (task_type == "Segmentation") {
builder_task_type_ = TaskType::Segmentation;
} else if (task_type == "Detection") {
builder_task_type_ = TaskType::Detection;
}
return *this;
}
// Setter method.
// @param const std::string & task_mode
// @return Builder setter method returns reference to the builder.
Builder &SetMode(const std::string &task_mode) {
builder_task_mode_ = task_mode;
return *this;
}
// Setter method.
// @param int32_t num_workers
// @return Builder setter method returns reference to the builder.
@ -119,25 +152,33 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
private:
bool builder_decode_;
std::string builder_dir_;
TaskType builder_task_type_;
std::string builder_task_mode_;
int32_t builder_num_workers_;
int32_t builder_op_connector_size_;
int32_t builder_rows_per_buffer_;
int64_t builder_num_samples_;
std::shared_ptr<Sampler> builder_sampler_;
std::unique_ptr<DataSchema> builder_schema_;
std::map<std::string, int32_t> builder_labels_to_read_;
};
// Constructor
// @param TaskType task_type - task type of VOC
// @param std::string task_mode - task mode of VOC
// @param std::string folder_path - dir directory of VOC
// @param std::map<std::string, int32_t> class_index - input class-to-index of annotation
// @param int32_t num_workers - number of workers reading images in parallel
// @param int32_t rows_per_buffer - number of images (rows) in each buffer
// @param std::string folder_path - dir directory of VOC
// @param int32_t queue_size - connector queue size
// @param int64_t num_samples - number of samples to read
// @param bool decode - whether to decode images
// @param std::unique_ptr<DataSchema> data_schema - the schema of the VOC dataset
// @param std::shared_ptr<Sampler> sampler - sampler tells VOCOp what to read
VOCOp(int32_t num_workers, int32_t rows_per_buffer, const std::string &folder_path, int32_t queue_size,
int64_t num_samples, bool decode, std::unique_ptr<DataSchema> data_schema, std::shared_ptr<Sampler> sampler);
VOCOp(const TaskType &task_type, const std::string &task_mode, const std::string &folder_path,
const std::map<std::string, int32_t> &class_index, int32_t num_workers, int32_t rows_per_buffer,
int32_t queue_size, int64_t num_samples, bool decode, std::unique_ptr<DataSchema> data_schema,
std::shared_ptr<Sampler> sampler);
// Destructor
~VOCOp() = default;
@ -167,6 +208,16 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
// @param show_all
void Print(std::ostream &out, bool show_all) const override;
// @param const std::string &dir - VOC dir path
// @param const std::string &task_type - task type of reading voc job
// @param const std::string &task_mode - task mode of reading voc job
// @param const py::dict &dict - input dict of class index
// @param int64_t numSamples - samples number of VOCDataset
// @param std::map<std::string, int32_t> *output_class_indexing - output class index of VOCDataset
static Status GetClassIndexing(const std::string &dir, const std::string &task_type, const std::string &task_mode,
const py::dict &dict, int64_t numSamples,
std::map<std::string, int32_t> *output_class_indexing);
private:
// Initialize Sampler, calls sampler->Init() within
// @return Status - The error code return
@ -184,19 +235,40 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
// @return Status - The error code return
Status ReadImageToTensor(const std::string &path, const ColDescriptor &col, std::shared_ptr<Tensor> *tensor);
// @param const std::string &path - path to the image file
// @param const ColDescriptor &col - contains tensor implementation and datatype
// @param std::shared_ptr<Tensor> tensor - return
// @return Status - The error code return
Status ReadAnnotationToTensor(const std::string &path, const ColDescriptor &col, std::shared_ptr<Tensor> *tensor);
// @param const std::vector<uint64_t> &keys - keys in ioblock
// @param std::unique_ptr<DataBuffer> db
// @return Status - The error code return
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
// Read image list from ImageSets
// @return Status - The error code return
Status ParseImageIds();
// Read annotation from Annotation folder
// @return Status - The error code return
Status ParseAnnotationIds();
// @param const std::string &path - path to annotation xml
// @return Status - The error code return
Status ParseAnnotationBbox(const std::string &path);
// @param const std::shared_ptr<Tensor> &sample_ids - sample ids of tensor
// @param std::vector<int64_t> *keys - image id
// @return Status - The error code return
Status TraverseSampleIds(const std::shared_ptr<Tensor> &sample_ids, std::vector<int64_t> *keys);
// Called first when function is called
// @return Status - The error code return
Status LaunchThreadsAndInitOp();
// Reset dataset state
// @return Status - The error code return
Status Reset() override;
bool decode_;
@ -205,6 +277,8 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
int64_t num_rows_;
int64_t num_samples_;
std::string folder_path_;
TaskType task_type_;
std::string task_mode_;
int32_t rows_per_buffer_;
std::shared_ptr<Sampler> sampler_;
std::unique_ptr<DataSchema> data_schema_;
@ -212,6 +286,9 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
WaitPost wp_;
std::vector<std::string> image_ids_;
QueueList<std::unique_ptr<IOBlock>> io_block_queues_;
std::map<std::string, int32_t> class_index_;
std::map<std::string, int32_t> label_index_;
std::map<std::string, Bbox> label_map_;
};
} // namespace dataset
} // namespace mindspore

View File

@ -34,7 +34,7 @@ import copy
import numpy as np
from mindspore._c_dataengine import DataType, TFReaderOp, ImageFolderOp, CifarOp, MnistOp, ManifestOp, \
MindRecordOp, TextFileOp, CBatchInfo
MindRecordOp, TextFileOp, VOCOp, CBatchInfo
from mindspore._c_expression import typing
from mindspore import log as logger
@ -3454,6 +3454,12 @@ class VOCDataset(SourceDataset):
Args:
dataset_dir (str): Path to the root directory that contains the dataset.
task (str): Set the task type of reading voc data, now only support "Segmentation" or "Detection"
(default="Segmentation")
mode(str): Set the data list txt file to be readed (default="train")
class_indexing (dict, optional): A str-to-int mapping from label name to index
(default=None, the folder names will be sorted alphabetically and each
class will be given a unique index starting from 0).
num_samples (int, optional): The number of images to be included in the dataset
(default=None, all images).
num_parallel_workers (int, optional): Number of workers to read the data
@ -3469,27 +3475,41 @@ class VOCDataset(SourceDataset):
argument should be specified only when num_shards is also specified.
Raises:
RuntimeError: If xml of Annotations is a invalid format
RuntimeError: If xml of Annotations loss attribution of "object"
RuntimeError: If xml of Annotations loss attribution of "bndbox"
RuntimeError: If sampler and shuffle are specified at the same time.
RuntimeError: If sampler and sharding are specified at the same time.
RuntimeError: If num_shards is specified but shard_id is None.
RuntimeError: If shard_id is specified but num_shards is None.
ValueError: If task is not equal 'Segmentation' or 'Detection'.
ValueError: If task equal 'Segmentation' but class_indexing is not None.
ValueError: If txt related to mode is not exist.
ValueError: If shard_id is invalid (< 0 or >= num_shards).
Examples:
>>> import mindspore.dataset as ds
>>> dataset_dir = "/path/to/voc_dataset_directory"
>>> # 1) read all VOC dataset samples in dataset_dir with 8 threads in random order:
>>> voc_dataset = ds.VOCDataset(dataset_dir, num_parallel_workers=8)
>>> # 2) read then decode all VOC dataset samples in dataset_dir in sequence:
>>> voc_dataset = ds.VOCDataset(dataset_dir, decode=True, shuffle=False)
>>> # in VOC dataset, each dictionary has keys "image" and "target"
>>> # 1) read VOC data for segmenatation train
>>> voc_dataset = ds.VOCDataset(dataset_dir, task="Segmentation", mode="train")
>>> # 2) read VOC data for detection train
>>> voc_dataset = ds.VOCDataset(dataset_dir, task="Detection", mode="train")
>>> # 3) read all VOC dataset samples in dataset_dir with 8 threads in random order:
>>> voc_dataset = ds.VOCDataset(dataset_dir, task="Detection", mode="train", num_parallel_workers=8)
>>> # 4) read then decode all VOC dataset samples in dataset_dir in sequence:
>>> voc_dataset = ds.VOCDataset(dataset_dir, task="Detection", mode="train", decode=True, shuffle=False)
>>> # in VOC dataset, if task='Segmentation', each dictionary has keys "image" and "target"
>>> # in VOC dataset, if task='Detection', each dictionary has keys "image" and "annotation"
"""
@check_vocdataset
def __init__(self, dataset_dir, num_samples=None, num_parallel_workers=None,
shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None):
def __init__(self, dataset_dir, task="Segmentation", mode="train", class_indexing=None, num_samples=None,
num_parallel_workers=None, shuffle=None, decode=False, sampler=None, num_shards=None, shard_id=None):
super().__init__(num_parallel_workers)
self.dataset_dir = dataset_dir
self.task = task
self.mode = mode
self.class_indexing = class_indexing
self.sampler = _select_sampler(num_samples, sampler, shuffle, num_shards, shard_id)
self.num_samples = num_samples
self.decode = decode
@ -3500,6 +3520,9 @@ class VOCDataset(SourceDataset):
def get_args(self):
args = super().get_args()
args["dataset_dir"] = self.dataset_dir
args["task"] = self.task
args["mode"] = self.mode
args["class_indexing"] = self.class_indexing
args["num_samples"] = self.num_samples
args["sampler"] = self.sampler
args["decode"] = self.decode
@ -3517,6 +3540,28 @@ class VOCDataset(SourceDataset):
"""
return self.num_samples
def get_class_indexing(self):
"""
Get the class index.
Return:
Dict, A str-to-int mapping from label name to index.
"""
if self.task != "Detection":
raise NotImplementedError()
if self.num_samples is None:
num_samples = 0
else:
num_samples = self.num_samples
if self.class_indexing is None:
class_indexing = dict()
else:
class_indexing = self.class_indexing
return VOCOp.get_class_indexing(self.dataset_dir, self.task, self.mode, class_indexing, num_samples)
class CelebADataset(SourceDataset):
"""

View File

@ -285,9 +285,9 @@ def create_node(node):
elif dataset_op == 'VOCDataset':
sampler = construct_sampler(node.get('sampler'))
pyobj = pyclass(node['dataset_dir'], node.get('num_samples'), node.get('num_parallel_workers'),
node.get('shuffle'), node.get('decode'), sampler, node.get('num_shards'),
node.get('shard_id'))
pyobj = pyclass(node['dataset_dir'], node.get('task'), node.get('mode'), node.get('class_indexing'),
node.get('num_samples'), node.get('num_parallel_workers'), node.get('shuffle'),
node.get('decode'), sampler, node.get('num_shards'), node.get('shard_id'))
elif dataset_op == 'CelebADataset':
sampler = construct_sampler(node.get('sampler'))

View File

@ -455,17 +455,44 @@ def check_vocdataset(method):
nreq_param_int = ['num_samples', 'num_parallel_workers', 'num_shards', 'shard_id']
nreq_param_bool = ['shuffle', 'decode']
nreq_param_dict = ['class_indexing']
# check dataset_dir; required argument
dataset_dir = param_dict.get('dataset_dir')
if dataset_dir is None:
raise ValueError("dataset_dir is not provided.")
check_dataset_dir(dataset_dir)
# check task; required argument
task = param_dict.get('task')
if task is None:
raise ValueError("task is not provided.")
if not isinstance(task, str):
raise ValueError("task is not str type.")
# check mode; required argument
mode = param_dict.get('mode')
if mode is None:
raise ValueError("mode is not provided.")
if not isinstance(mode, str):
raise ValueError("mode is not str type.")
imagesets_file = ""
if task == "Segmentation":
imagesets_file = os.path.join(dataset_dir, "ImageSets", "Segmentation", mode + ".txt")
if param_dict.get('class_indexing') is not None:
raise ValueError("class_indexing is invalid in Segmentation task")
elif task == "Detection":
imagesets_file = os.path.join(dataset_dir, "ImageSets", "Main", mode + ".txt")
else:
raise ValueError("Invalid task : " + task)
check_dataset_file(imagesets_file)
check_param_type(nreq_param_int, param_dict, int)
check_param_type(nreq_param_bool, param_dict, bool)
check_param_type(nreq_param_dict, param_dict, dict)
check_sampler_shuffle_shard_options(param_dict)
return method(*args, **kwargs)

View File

@ -64,7 +64,7 @@ SET(DE_UT_SRCS
cifar_op_test.cc
celeba_op_test.cc
take_op_test.cc
text_file_op_test.cc)
text_file_op_test.cc
filter_op_test.cc
)

View File

@ -50,17 +50,170 @@ std::shared_ptr<RepeatOp> Repeat(int repeat_cnt);
std::shared_ptr<ExecutionTree> Build(std::vector<std::shared_ptr<DatasetOp>> ops);
std::shared_ptr<VOCOp> CreateVOC(int64_t num_wrks, int64_t rows, int64_t conns, std::string path,
bool shuf = false, std::unique_ptr<Sampler> sampler = nullptr,
int64_t num_samples = 0, bool decode = false) {
std::shared_ptr<VOCOp> so;
VOCOp::Builder builder;
Status rc = builder.SetNumWorkers(num_wrks).SetDir(path).SetRowsPerBuffer(rows)
.SetOpConnectorSize(conns).SetSampler(std::move(sampler))
.SetNumSamples(num_samples).SetDecode(decode).Build(&so);
return so;
}
class MindDataTestVOCSampler : public UT::DatasetOpTesting {
class MindDataTestVOCOp : public UT::DatasetOpTesting {
protected:
};
TEST_F(MindDataTestVOCOp, TestVOCDetection) {
// Start with an empty execution tree
auto my_tree = std::make_shared<ExecutionTree>();
std::string dataset_path;
dataset_path = datasets_root_path_ + "/testVOC2012";
std::string task_type("Detection");
std::string task_mode("train");
std::shared_ptr<VOCOp> my_voc_op;
VOCOp::Builder builder;
Status rc = builder.SetDir(dataset_path)
.SetTask(task_type)
.SetMode(task_mode)
.Build(&my_voc_op);
ASSERT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_voc_op);
ASSERT_TRUE(rc.IsOk());
rc = my_tree->AssignRoot(my_voc_op);
ASSERT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "Launch tree and begin iteration.";
rc = my_tree->Prepare();
ASSERT_TRUE(rc.IsOk());
rc = my_tree->Launch();
ASSERT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree);
TensorRow tensor_list;
rc = di.FetchNextTensorRow(&tensor_list);
ASSERT_TRUE(rc.IsOk());
int row_count = 0;
while (!tensor_list.empty()) {
MS_LOG(DEBUG) << "Row display for row #: " << row_count << ".";
//Display the tensor by calling the printer on it
for (int i = 0; i < tensor_list.size(); i++) {
std::ostringstream ss;
ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
MS_LOG(DEBUG) << "Tensor print: " << ss.str() << ".";
}
rc = di.FetchNextTensorRow(&tensor_list);
ASSERT_TRUE(rc.IsOk());
row_count++;
}
ASSERT_EQ(row_count, 9);
}
TEST_F(MindDataTestVOCOp, TestVOCSegmentation) {
// Start with an empty execution tree
auto my_tree = std::make_shared<ExecutionTree>();
std::string dataset_path;
dataset_path = datasets_root_path_ + "/testVOC2012";
std::string task_type("Segmentation");
std::string task_mode("train");
std::shared_ptr<VOCOp> my_voc_op;
VOCOp::Builder builder;
Status rc = builder.SetDir(dataset_path)
.SetTask(task_type)
.SetMode(task_mode)
.Build(&my_voc_op);
ASSERT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_voc_op);
ASSERT_TRUE(rc.IsOk());
rc = my_tree->AssignRoot(my_voc_op);
ASSERT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "Launch tree and begin iteration.";
rc = my_tree->Prepare();
ASSERT_TRUE(rc.IsOk());
rc = my_tree->Launch();
ASSERT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree);
TensorRow tensor_list;
rc = di.FetchNextTensorRow(&tensor_list);
ASSERT_TRUE(rc.IsOk());
int row_count = 0;
while (!tensor_list.empty()) {
MS_LOG(DEBUG) << "Row display for row #: " << row_count << ".";
//Display the tensor by calling the printer on it
for (int i = 0; i < tensor_list.size(); i++) {
std::ostringstream ss;
ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
MS_LOG(DEBUG) << "Tensor print: " << ss.str() << ".";
}
rc = di.FetchNextTensorRow(&tensor_list);
ASSERT_TRUE(rc.IsOk());
row_count++;
}
ASSERT_EQ(row_count, 10);
}
TEST_F(MindDataTestVOCOp, TestVOCClassIndex) {
// Start with an empty execution tree
auto my_tree = std::make_shared<ExecutionTree>();
std::string dataset_path;
dataset_path = datasets_root_path_ + "/testVOC2012";
std::string task_type("Detection");
std::string task_mode("train");
std::map<std::string, int32_t> class_index;
class_index["car"] = 0;
class_index["cat"] = 1;
class_index["train"] = 5;
std::shared_ptr<VOCOp> my_voc_op;
VOCOp::Builder builder;
Status rc = builder.SetDir(dataset_path)
.SetTask(task_type)
.SetMode(task_mode)
.SetClassIndex(class_index)
.Build(&my_voc_op);
ASSERT_TRUE(rc.IsOk());
rc = my_tree->AssociateNode(my_voc_op);
ASSERT_TRUE(rc.IsOk());
rc = my_tree->AssignRoot(my_voc_op);
ASSERT_TRUE(rc.IsOk());
MS_LOG(DEBUG) << "Launch tree and begin iteration.";
rc = my_tree->Prepare();
ASSERT_TRUE(rc.IsOk());
rc = my_tree->Launch();
ASSERT_TRUE(rc.IsOk());
// Start the loop of reading tensors from our pipeline
DatasetIterator di(my_tree);
TensorRow tensor_list;
rc = di.FetchNextTensorRow(&tensor_list);
ASSERT_TRUE(rc.IsOk());
int row_count = 0;
while (!tensor_list.empty()) {
MS_LOG(DEBUG) << "Row display for row #: " << row_count << ".";
//Display the tensor by calling the printer on it
for (int i = 0; i < tensor_list.size(); i++) {
std::ostringstream ss;
ss << "(" << tensor_list[i] << "): " << *tensor_list[i] << std::endl;
MS_LOG(DEBUG) << "Tensor print: " << ss.str() << ".";
}
rc = di.FetchNextTensorRow(&tensor_list);
ASSERT_TRUE(rc.IsOk());
row_count++;
}
ASSERT_EQ(row_count, 6);
}

View File

@ -0,0 +1,51 @@
<annotation>
<folder>VOC2012</folder>
<filename>32.jpg</filename>
<source>
<database>simulate VOC2007 Database</database>
<annotation>simulate VOC2007</annotation>
<image>flickr</image>
</source>
<size>
<width>500</width>
<height>281</height>
<depth>3</depth>
</size>
<segmented>1</segmented>
<object>
<name>train</name>
<pose>Frontal</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>113</xmin>
<ymin>79</ymin>
<xmax>323</xmax>
<ymax>191</ymax>
</bndbox>
</object>
<object>
<name>train</name>
<pose>Left</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>121</xmin>
<ymin>91</ymin>
<xmax>191</xmax>
<ymax>121</ymax>
</bndbox>
</object>
<object>
<name>car</name>
<pose>Rear</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>195</xmin>
<ymin>155</ymin>
<xmax>235</xmax>
<ymax>235</ymax>
</bndbox>
</object>
</annotation>

View File

@ -1,54 +0,0 @@
<annotation>
<folder>VOC2012</folder>
<filename>27.jpg</filename>
<source>
<database>simulate VOC2007 Database</database>
<annotation>simulate VOC2007</annotation>
<image>flickr</image>
</source>
<size>
<width>486</width>
<height>500</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>person</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>161</xmin>
<ymin>132</ymin>
<xmax>323</xmax>
<ymax>342</ymax>
</bndbox>
<part>
<name>head</name>
<bndbox>
<xmin>159</xmin>
<ymin>113</ymin>
<xmax>208</xmax>
<ymax>166</ymax>
</bndbox>
</part>
<part>
<name>foot</name>
<bndbox>
<xmin>261</xmin>
<ymin>321</ymin>
<xmax>287</xmax>
<ymax>344</ymax>
</bndbox>
</part>
<part>
<name>foot</name>
<bndbox>
<xmin>329</xmin>
<ymin>317</ymin>
<xmax>330</xmax>
<ymax>366</ymax>
</bndbox>
</part>
</object>
</annotation>

View File

@ -0,0 +1 @@
invalidxml

View File

@ -0,0 +1,15 @@
<annotation>
<folder>VOC2012</folder>
<filename>33.jpg</filename>
<source>
<database>simulate VOC2007 Database</database>
<annotation>simulate VOC2007</annotation>
<image>flickr</image>
</source>
<size>
<width>500</width>
<height>366</height>
<depth>3</depth>
</size>
<segmented>1</segmented>
</annotation>

View File

@ -0,0 +1 @@
invalidxml

View File

@ -0,0 +1,9 @@
32
33
39
42
61
63
68
121
123

View File

@ -0,0 +1 @@
15

View File

@ -0,0 +1 @@
15

View File

@ -0,0 +1 @@
xmlnoobject

View File

@ -0,0 +1 @@
4176

Binary file not shown.

After

Width:  |  Height:  |  Size: 170 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 169 KiB

View File

Before

Width:  |  Height:  |  Size: 536 KiB

After

Width:  |  Height:  |  Size: 536 KiB

View File

Before

Width:  |  Height:  |  Size: 536 KiB

After

Width:  |  Height:  |  Size: 536 KiB

View File

@ -15,25 +15,69 @@
import mindspore.dataset.transforms.vision.c_transforms as vision
import mindspore.dataset as ds
from mindspore import log as logger
DATA_DIR = "../data/dataset/testVOC2012"
IMAGE_SHAPE = [2268, 2268, 2268, 2268, 642, 607, 561, 596, 612, 2268]
TARGET_SHAPE = [680, 680, 680, 680, 642, 607, 561, 596, 612, 680]
def test_voc_normal():
data1 = ds.VOCDataset(DATA_DIR, decode=True)
def test_voc_segmentation():
data1 = ds.VOCDataset(DATA_DIR, task="Segmentation", mode="train", decode=True, shuffle=False)
num = 0
for item in data1.create_dict_iterator():
logger.info("item[image] is {}".format(item["image"]))
logger.info("item[image].shape is {}".format(item["image"].shape))
logger.info("item[target] is {}".format(item["target"]))
logger.info("item[target].shape is {}".format(item["target"].shape))
assert (item["image"].shape[0] == IMAGE_SHAPE[num])
assert (item["target"].shape[0] == TARGET_SHAPE[num])
num += 1
logger.info("num is {}".format(str(num)))
assert (num == 10)
def test_voc_detection():
data1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
num = 0
count = [ 0, 0, 0, 0, 0, 0 ]
for item in data1.create_dict_iterator():
assert (item["image"].shape[0] == IMAGE_SHAPE[num])
for bbox in item["annotation"]:
count[bbox[0]] += 1
num += 1
assert (num == 9)
assert (count == [3,2,1,2,4,3])
def test_voc_class_index():
class_index = { 'car': 0, 'cat': 1, 'train': 5 }
data1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", class_indexing=class_index, decode=True)
class_index1 = data1.get_class_indexing()
assert (class_index1 == { 'car': 0, 'cat': 1, 'train': 5 })
data1 = data1.shuffle(4)
class_index2 = data1.get_class_indexing()
assert (class_index2 == { 'car': 0, 'cat': 1, 'train': 5 })
num = 0
count = [0,0,0,0,0,0]
for item in data1.create_dict_iterator():
for bbox in item["annotation"]:
assert (bbox[0] == 0 or bbox[0] == 1 or bbox[0] == 5)
count[bbox[0]] += 1
num += 1
assert (num == 6)
assert (count == [3,2,0,0,0,3])
def test_voc_get_class_indexing():
data1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True)
class_index1 = data1.get_class_indexing()
assert (class_index1 == { 'car': 0, 'cat': 1, 'chair': 2, 'dog': 3, 'person': 4, 'train': 5 })
data1 = data1.shuffle(4)
class_index2 = data1.get_class_indexing()
assert (class_index2 == { 'car': 0, 'cat': 1, 'chair': 2, 'dog': 3, 'person': 4, 'train': 5 })
num = 0
count = [0,0,0,0,0,0]
for item in data1.create_dict_iterator():
for bbox in item["annotation"]:
assert (bbox[0] == 0 or bbox[0] == 1 or bbox[0] == 2 or bbox[0] == 3 or bbox[0] == 4 or bbox[0] == 5)
count[bbox[0]] += 1
num += 1
assert (num == 9)
assert (count == [3,2,1,2,4,3])
def test_case_0():
data1 = ds.VOCDataset(DATA_DIR, decode=True)
data1 = ds.VOCDataset(DATA_DIR, task="Segmentation", mode="train", decode=True)
resize_op = vision.Resize((224, 224))
@ -46,7 +90,79 @@ def test_case_0():
num = 0
for item in data1.create_dict_iterator():
logger.info("item[image].shape is {}".format(item["image"].shape))
logger.info("item[target].shape is {}".format(item["target"].shape))
num += 1
logger.info("num is {}".format(str(num)))
assert (num == 20)
def test_case_1():
data1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True)
resize_op = vision.Resize((224, 224))
data1 = data1.map(input_columns=["image"], operations=resize_op)
repeat_num = 4
data1 = data1.repeat(repeat_num)
batch_size = 2
data1 = data1.batch(batch_size, drop_remainder=True, pad_info={})
num = 0
for item in data1.create_dict_iterator():
num += 1
assert (num == 18)
def test_voc_exception():
try:
data1 = ds.VOCDataset(DATA_DIR, task="InvalidTask", mode="train", decode=True)
for _ in data1.create_dict_iterator():
pass
assert False
except ValueError:
pass
try:
data2 = ds.VOCDataset(DATA_DIR, task="Segmentation", mode="train", class_indexing={ "cat":0 }, decode=True)
for _ in data2.create_dict_iterator():
pass
assert False
except ValueError:
pass
try:
data3 = ds.VOCDataset(DATA_DIR, task="Detection", mode="notexist", decode=True)
for _ in data3.create_dict_iterator():
pass
assert False
except ValueError:
pass
try:
data4 = ds.VOCDataset(DATA_DIR, task="Detection", mode="xmlnotexist", decode=True)
for _ in data4.create_dict_iterator():
pass
assert False
except RuntimeError:
pass
try:
data5 = ds.VOCDataset(DATA_DIR, task="Detection", mode="invalidxml", decode=True)
for _ in data5.create_dict_iterator():
pass
assert False
except RuntimeError:
pass
try:
data6 = ds.VOCDataset(DATA_DIR, task="Detection", mode="xmlnoobject", decode=True)
for _ in data6.create_dict_iterator():
pass
assert False
except RuntimeError:
pass
if __name__ == '__main__':
test_voc_segmentation()
test_voc_detection()
test_voc_class_index()
test_voc_get_class_indexing()
test_case_0()
test_case_1()
test_voc_exception()