!5214 yolov3_darknet53 script suit for gpu

Merge pull request !5214 from hanhuifeng/yolov3_gpu
This commit is contained in:
mindspore-ci-bot 2020-08-28 14:51:52 +08:00 committed by Gitee
commit c9148c967b
9 changed files with 318 additions and 49 deletions

View File

@ -53,8 +53,8 @@ Dataset used: [COCO2014](https://cocodataset.org/#download)
# [Environment Requirements](#contents)
- HardwareAscend
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- HardwareAscend/GPU
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
- For more information, please check the resources below
@ -65,7 +65,7 @@ Dataset used: [COCO2014](https://cocodataset.org/#download)
# [Quick Start](#contents)
After installing MindSpore via the official website, you can start training and evaluation in Ascend as follows:
After installing MindSpore via the official website, you can start training and evaluation in as follows. If running on GPU, please add `--device_target=GPU` in the python command or use the "_gpu" shell script ("xxx_gpu.sh").
```
# The darknet53_backbone.ckpt in the follow script is got from darknet53 training like paper.
@ -87,9 +87,12 @@ python train.py \
# standalone training example(1p) by shell script
sh run_standalone_train.sh dataset/coco2014 darknet53_backbone.ckpt
# distributed training example(8p) by shell script
# For Ascend device, distributed training example(8p) by shell script
sh run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json
# For GPU device, distributed training example(8p) by shell script
sh run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt
# run evaluation by python command
python eval.py \
--data_dir=./dataset/coco2014 \
@ -113,6 +116,9 @@ sh run_eval.sh dataset/coco2014/ checkpoint/0-319_102400.ckpt
├─run_standalone_train.sh # launch standalone training(1p) in ascend
├─run_distribute_train.sh # launch distributed training(8p) in ascend
└─run_eval.sh # launch evaluating in ascend
├─run_standalone_train_gpu.sh # launch standalone training(1p) in gpu
├─run_distribute_train_gpu.sh # launch distributed training(8p) in gpu
└─run_eval_gpu.sh # launch evaluating in gpu
├─src
├─__init__.py # python init file
├─config.py # parameter configuration
@ -138,6 +144,7 @@ Major parameters in train.py as follow.
optional arguments:
-h, --help show this help message and exit
--device_target device where the code will be implemented: "Ascend" | "GPU", default is "Ascend"
--data_dir DATA_DIR Train dataset directory.
--per_batch_size PER_BATCH_SIZE
Batch size for Training. Default: 32.
@ -212,7 +219,7 @@ python train.py \
--lr_scheduler=cosine_annealing > log.txt 2>&1 &
```
The python command above will run in the background, you can view the results through the file `log.txt`.
The python command above will run in the background, you can view the results through the file `log.txt`. If running on GPU, please add `--device_target=GPU` in the python command.
After training, you'll get some checkpoint files under the outputs folder by default. The loss value will be achieved as follows:
@ -228,9 +235,14 @@ The model checkpoint will be saved in outputs directory.
### Distributed Training
For Ascend device, distributed training example(8p) by shell script
```
sh run_distribute_train.sh dataset/coco2014 darknet53_backbone.ckpt rank_table_8p.json
```
For GPU device, distributed training example(8p) by shell script
```
sh run_distribute_train_gpu.sh dataset/coco2014 darknet53_backbone.ckpt
```
The above shell script will run distribute training in the background. You can view the results through the file `train_parallel[X]/log.txt`. The loss value will be achieved as follows:
@ -254,7 +266,7 @@ epoch[319], iter[102300], loss:35.430038, 423.49 imgs/sec, lr:2.409552052995423e
### Evaluation
Before running the command below.
Before running the command below. If running on GPU, please add `--device_target=GPU` in the python command or use the "_gpu" shell script ("xxx_gpu.sh").
```
python eval.py \

View File

@ -35,9 +35,6 @@ from src.logger import get_logger
from src.yolo_dataset import create_yolo_dataset
from src.config import ConfigYOLOV3DarkNet53
devid = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=devid)
class Redirct:
def __init__(self):
@ -208,6 +205,10 @@ def parse_args():
"""Parse arguments."""
parser = argparse.ArgumentParser('mindspore coco testing')
# device related
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
help='device where the code will be implemented. (Default: Ascend)')
# dataset related
parser.add_argument('--data_dir', type=str, default='', help='train data dir')
parser.add_argument('--per_batch_size', default=1, type=int, help='batch size for per gpu')
@ -243,10 +244,13 @@ def test():
start_time = time.time()
args = parse_args()
devid = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=True, device_id=devid)
# logger
args.outputs_dir = os.path.join(args.log_path,
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
rank_id = int(os.environ.get('RANK_ID'))
rank_id = int(os.environ.get('RANK_ID')) if os.environ.get('RANK_ID') else 0
args.logger = get_logger(args.outputs_dir, rank_id)
context.reset_auto_parallel_context()

View File

@ -0,0 +1,67 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 2 ]
then
echo "Usage: sh run_distribute_train_gpu.sh [DATASET_PATH] [PRETRAINED_BACKBONE]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
DATASET_PATH=$(get_real_path $1)
PRETRAINED_BACKBONE=$(get_real_path $2)
echo $DATASET_PATH
echo $PRETRAINED_BACKBONE
if [ ! -d $DATASET_PATH ]
then
echo "error: DATASET_PATH=$DATASET_PATH is not a directory"
exit 1
fi
if [ ! -f $PRETRAINED_BACKBONE ]
then
echo "error: PRETRAINED_PATH=$PRETRAINED_BACKBONE is not a file"
exit 1
fi
export DEVICE_NUM=8
rm -rf ./train_parallel
mkdir ./train_parallel
cp ../*.py ./train_parallel
cp -r ../src ./train_parallel
cd ./train_parallel || exit
env > env.log
mpirun --allow-run-as-root -n ${DEVICE_NUM} python train.py \
--data_dir=$DATASET_PATH \
--pretrained_backbone=$PRETRAINED_BACKBONE \
--device_target=GPU \
--is_distributed=1 \
--lr=0.1 \
--T_max=320 \
--max_epoch=320 \
--warmup_epochs=4 \
--training_shape=416 \
--lr_scheduler=cosine_annealing > log.txt 2>&1 &
cd ..

View File

@ -0,0 +1,67 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 2 ]
then
echo "Usage: sh run_eval_gpu.sh [DATASET_PATH] [CHECKPOINT_PATH]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
DATASET_PATH=$(get_real_path $1)
CHECKPOINT_PATH=$(get_real_path $2)
echo $DATASET_PATH
echo $CHECKPOINT_PATH
if [ ! -d $DATASET_PATH ]
then
echo "error: DATASET_PATH=$PATH1 is not a directory"
exit 1
fi
if [ ! -f $CHECKPOINT_PATH ]
then
echo "error: CHECKPOINT_PATH=$PATH2 is not a file"
exit 1
fi
export DEVICE_NUM=1
export DEVICE_ID=0
export RANK_SIZE=$DEVICE_NUM
export RANK_ID=0
if [ -d "eval" ];
then
rm -rf ./eval
fi
mkdir ./eval
cp ../*.py ./eval
cp -r ../src ./eval
cd ./eval || exit
env > env.log
echo "start infering for device $DEVICE_ID"
python eval.py \
--device_target="GPU" \
--data_dir=$DATASET_PATH \
--pretrained=$CHECKPOINT_PATH \
--testing_shape=416 > log.txt 2>&1 &
cd ..

View File

@ -0,0 +1,75 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 2 ]
then
echo "Usage: sh run_standalone_train_gpu.sh [DATASET_PATH] [PRETRAINED_BACKBONE]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
DATASET_PATH=$(get_real_path $1)
echo $DATASET_PATH
PRETRAINED_BACKBONE=$(get_real_path $2)
echo $PRETRAINED_BACKBONE
if [ ! -d $DATASET_PATH ]
then
echo "error: DATASET_PATH=$DATASET_PATH is not a directory"
exit 1
fi
if [ ! -f $PRETRAINED_BACKBONE ]
then
echo "error: PRETRAINED_PATH=$PRETRAINED_BACKBONE is not a file"
exit 1
fi
export DEVICE_NUM=1
export DEVICE_ID=0
export RANK_ID=0
export RANK_SIZE=1
if [ -d "train" ];
then
rm -rf ./train
fi
mkdir ./train
cp ../*.py ./train
cp -r ../src ./train
cd ./train || exit
echo "start training for device $DEVICE_ID"
env > env.log
python train.py \
--device_targe="GPU" \
--data_dir=$DATASET_PATH \
--pretrained_backbone=$PRETRAINED_BACKBONE \
--is_distributed=0 \
--lr=0.1 \
--T_max=320 \
--max_epoch=320 \
--warmup_epochs=4 \
--training_shape=416 \
--lr_scheduler=cosine_annealing > log.txt 2>&1 &
cd ..

View File

@ -465,6 +465,11 @@ class MultiScaleTrans:
self.seed_list = self.generate_seed_list(seed_num=self.seed_num)
self.resize_count_num = int(np.ceil(self.dataset_size / self.resize_rate))
self.device_num = device_num
self.anchor_scales = config.anchor_scales
self.num_classes = config.num_classes
self.max_box = config.max_box
self.label_smooth = config.label_smooth
self.label_smooth_factor = config.label_smooth_factor
def generate_seed_list(self, init_seed=1234, seed_num=int(1e6), seed_range=(1, 1000)):
seed_list = []
@ -474,13 +479,20 @@ class MultiScaleTrans:
seed_list.append(seed)
return seed_list
def __call__(self, imgs, annos, batchInfo):
def __call__(self, imgs, annos, x1, x2, x3, x4, x5, x6, batchInfo):
epoch_num = batchInfo.get_epoch_num()
size_idx = int(batchInfo.get_batch_num() / self.resize_rate)
seed_key = self.seed_list[(epoch_num * self.resize_count_num + size_idx) % self.seed_num]
ret_imgs = []
ret_annos = []
bbox1 = []
bbox2 = []
bbox3 = []
gt1 = []
gt2 = []
gt3 = []
if self.size_dict.get(seed_key, None) is None:
random.seed(seed_key)
new_size = random.choice(self.config.multi_scale)
@ -491,8 +503,19 @@ class MultiScaleTrans:
for img, anno in zip(imgs, annos):
img, anno = preprocess_fn(img, anno, self.config, input_size, self.device_num)
ret_imgs.append(img.transpose(2, 0, 1).copy())
ret_annos.append(anno)
return np.array(ret_imgs), np.array(ret_annos)
bbox_true_1, bbox_true_2, bbox_true_3, gt_box1, gt_box2, gt_box3 = \
_preprocess_true_boxes(true_boxes=anno, anchors=self.anchor_scales, in_shape=img.shape[0:2],
num_classes=self.num_classes, max_boxes=self.max_box,
label_smooth=self.label_smooth, label_smooth_factor=self.label_smooth_factor)
bbox1.append(bbox_true_1)
bbox2.append(bbox_true_2)
bbox3.append(bbox_true_3)
gt1.append(gt_box1)
gt2.append(gt_box2)
gt3.append(gt_box3)
ret_annos.append(0)
return np.array(ret_imgs), np.array(ret_annos), np.array(bbox1), np.array(bbox2), np.array(bbox3), \
np.array(gt1), np.array(gt2), np.array(gt3)
def thread_batch_preprocess_true_box(annos, config, input_shape, result_index, batch_bbox_true_1, batch_bbox_true_2,

View File

@ -15,6 +15,9 @@
"""Util class or function."""
from mindspore.train.serialization import load_checkpoint
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from .yolo import YoloLossBlock
class AverageMeter:
@ -175,3 +178,10 @@ class ShapeRecord:
for key in self.shape_record:
rate = self.shape_record[key] / float(self.shape_record['total'])
logger.info('shape {}: {:.2f}%'.format(key, rate*100))
def keep_loss_fp32(network):
"""Keep loss of network with float32"""
for _, cell in network.cells_and_names():
if isinstance(cell, (YoloLossBlock,)):
cell.to_float(mstype.float32)

View File

@ -15,6 +15,7 @@
"""YOLOV3 dataset."""
import os
import multiprocessing
from PIL import Image
from pycocotools.coco import COCO
import mindspore.dataset as de
@ -126,7 +127,7 @@ class COCOYoloDataset:
tmp.append(int(label))
# tmp [x_min y_min x_max y_max, label]
out_target.append(tmp)
return img, out_target
return img, out_target, [], [], [], [], [], []
def __len__(self):
return len(self.img_ids)
@ -155,20 +156,22 @@ def create_yolo_dataset(image_dir, anno_path, batch_size, max_epoch, device_num,
hwc_to_chw = CV.HWC2CHW()
config.dataset_size = len(yolo_dataset)
num_parallel_workers1 = int(64 / device_num)
num_parallel_workers2 = int(16 / device_num)
cores = multiprocessing.cpu_count()
num_parallel_workers = int(cores / device_num)
if is_training:
multi_scale_trans = MultiScaleTrans(config, device_num)
dataset_column_names = ["image", "annotation", "bbox1", "bbox2", "bbox3",
"gt_box1", "gt_box2", "gt_box3"]
if device_num != 8:
ds = de.GeneratorDataset(yolo_dataset, column_names=["image", "annotation"],
num_parallel_workers=num_parallel_workers1,
ds = de.GeneratorDataset(yolo_dataset, column_names=dataset_column_names,
num_parallel_workers=min(32, num_parallel_workers),
sampler=distributed_sampler)
ds = ds.batch(batch_size, per_batch_map=multi_scale_trans, input_columns=['image', 'annotation'],
num_parallel_workers=num_parallel_workers2, drop_remainder=True)
ds = ds.batch(batch_size, per_batch_map=multi_scale_trans, input_columns=dataset_column_names,
num_parallel_workers=min(32, num_parallel_workers), drop_remainder=True)
else:
ds = de.GeneratorDataset(yolo_dataset, column_names=["image", "annotation"], sampler=distributed_sampler)
ds = ds.batch(batch_size, per_batch_map=multi_scale_trans, input_columns=['image', 'annotation'],
num_parallel_workers=8, drop_remainder=True)
ds = de.GeneratorDataset(yolo_dataset, column_names=dataset_column_names, sampler=distributed_sampler)
ds = ds.batch(batch_size, per_batch_map=multi_scale_trans, input_columns=dataset_column_names,
num_parallel_workers=min(8, num_parallel_workers), drop_remainder=True)
else:
ds = de.GeneratorDataset(yolo_dataset, column_names=["image", "img_id"],
sampler=distributed_sampler)

View File

@ -28,6 +28,8 @@ from mindspore.train.callback import ModelCheckpoint, RunContext
from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
import mindspore as ms
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore import amp
from mindspore.train.loss_scale_manager import FixedLossScaleManager
from src.yolo import YOLOV3DarkNet53, YoloWithLossCell, TrainingWrapper
from src.logger import get_logger
@ -37,13 +39,7 @@ from src.lr_scheduler import warmup_step_lr, warmup_cosine_annealing_lr, \
from src.yolo_dataset import create_yolo_dataset
from src.initializer import default_recurisive_init
from src.config import ConfigYOLOV3DarkNet53
from src.transforms import batch_preprocess_true_box, batch_preprocess_true_box_single
from src.util import ShapeRecord
devid = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
device_target="Ascend", save_graphs=True, device_id=devid)
from src.util import keep_loss_fp32
class BuildTrainNetwork(nn.Cell):
@ -62,6 +58,10 @@ def parse_args():
"""Parse train arguments."""
parser = argparse.ArgumentParser('mindspore coco training')
# device related
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
help='device where the code will be implemented. (Default: Ascend)')
# dataset related
parser.add_argument('--data_dir', type=str, help='Train dataset directory.')
parser.add_argument('--per_batch_size', default=32, type=int, help='Batch size for Training. Default: 32.')
@ -136,9 +136,16 @@ def train():
"""Train function."""
args = parse_args()
devid = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
device_target=args.device_target, save_graphs=True, device_id=devid)
# init distributed
if args.is_distributed:
init()
if args.device_target == "Ascend":
init()
else:
init("nccl")
args.rank = get_rank()
args.group_size = get_group_size()
@ -259,9 +266,19 @@ def train():
momentum=args.momentum,
weight_decay=args.weight_decay,
loss_scale=args.loss_scale)
network = TrainingWrapper(network, opt)
network.set_train()
enable_amp = False
is_gpu = context.get_context("device_target") == "GPU"
if is_gpu:
enable_amp = True
if enable_amp:
loss_scale_value = 1.0
loss_scale = FixedLossScaleManager(loss_scale_value, drop_overflow_update=False)
network = amp.build_train_network(network, optimizer=opt, loss_scale_manager=loss_scale,
level="O2", keep_batchnorm_fp32=True)
keep_loss_fp32(network)
else:
network = TrainingWrapper(network, opt)
network.set_train()
if args.rank_save_ckpt_flag:
# checkpoint save
@ -282,28 +299,19 @@ def train():
t_end = time.time()
data_loader = ds.create_dict_iterator()
shape_record = ShapeRecord()
for i, data in enumerate(data_loader):
images = data["image"]
input_shape = images.shape[2:4]
args.logger.info('iter[{}], shape{}'.format(i, input_shape[0]))
shape_record.set(input_shape)
images = Tensor(images)
annos = data["annotation"]
if args.group_size == 1:
batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1, batch_gt_box2 = \
batch_preprocess_true_box(annos, config, input_shape)
else:
batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1, batch_gt_box2 = \
batch_preprocess_true_box_single(annos, config, input_shape)
batch_y_true_0 = Tensor(batch_y_true_0)
batch_y_true_1 = Tensor(batch_y_true_1)
batch_y_true_2 = Tensor(batch_y_true_2)
batch_gt_box0 = Tensor(batch_gt_box0)
batch_gt_box1 = Tensor(batch_gt_box1)
batch_gt_box2 = Tensor(batch_gt_box2)
batch_y_true_0 = Tensor(data['bbox1'])
batch_y_true_1 = Tensor(data['bbox2'])
batch_y_true_2 = Tensor(data['bbox3'])
batch_gt_box0 = Tensor(data['gt_box1'])
batch_gt_box1 = Tensor(data['gt_box2'])
batch_gt_box2 = Tensor(data['gt_box3'])
input_shape = Tensor(tuple(input_shape[::-1]), ms.float32)
loss = network(images, batch_y_true_0, batch_y_true_1, batch_y_true_2, batch_gt_box0, batch_gt_box1,