forked from mindspore-Ecosystem/mindspore
!3180 Update for python AutoContrast API, cpp UnifromAugment API and UT
Merge pull request !3180 from alashkari/update-aug-ops-2
This commit is contained in:
commit
c84d4bbd36
|
@ -425,7 +425,7 @@ void bindTensorOps1(py::module *m) {
|
|||
|
||||
(void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>(
|
||||
*m, "UniformAugOp", "Tensor operation to apply random augmentation(s).")
|
||||
.def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("operations"),
|
||||
.def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("transforms"),
|
||||
py::arg("NumOps") = UniformAugOp::kDefNumOps);
|
||||
|
||||
(void)py::class_<BoundingBoxAugmentOp, TensorOp, std::shared_ptr<BoundingBoxAugmentOp>>(
|
||||
|
|
|
@ -90,9 +90,9 @@ std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size) {
|
|||
}
|
||||
|
||||
// Function to create UniformAugOperation.
|
||||
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> operations,
|
||||
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> transforms,
|
||||
int32_t num_ops) {
|
||||
auto op = std::make_shared<UniformAugOperation>(operations, num_ops);
|
||||
auto op = std::make_shared<UniformAugOperation>(transforms, num_ops);
|
||||
// Input validation
|
||||
if (!op->ValidateParams()) {
|
||||
return nullptr;
|
||||
|
@ -290,14 +290,14 @@ std::shared_ptr<TensorOp> CenterCropOperation::Build() {
|
|||
}
|
||||
|
||||
// UniformAugOperation
|
||||
UniformAugOperation::UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> operations, int32_t num_ops)
|
||||
: operations_(operations), num_ops_(num_ops) {}
|
||||
UniformAugOperation::UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops)
|
||||
: transforms_(transforms), num_ops_(num_ops) {}
|
||||
|
||||
bool UniformAugOperation::ValidateParams() { return true; }
|
||||
|
||||
std::shared_ptr<TensorOp> UniformAugOperation::Build() {
|
||||
std::vector<std::shared_ptr<TensorOp>> tensor_ops;
|
||||
(void)std::transform(operations_.begin(), operations_.end(), std::back_inserter(tensor_ops),
|
||||
(void)std::transform(transforms_.begin(), transforms_.end(), std::back_inserter(tensor_ops),
|
||||
[](std::shared_ptr<TensorOperation> op) -> std::shared_ptr<TensorOp> { return op->Build(); });
|
||||
std::shared_ptr<UniformAugOp> tensor_op = std::make_shared<UniformAugOp>(tensor_ops, num_ops_);
|
||||
return tensor_op;
|
||||
|
|
|
@ -108,10 +108,10 @@ std::shared_ptr<CenterCropOperation> CenterCrop(std::vector<int32_t> size);
|
|||
|
||||
/// \brief Function to create a UniformAugment TensorOperation.
|
||||
/// \notes Tensor operation to perform randomly selected augmentation.
|
||||
/// \param[in] operations - a vector of TensorOperation operations.
|
||||
/// \param[in] transforms - a vector of TensorOperation transforms.
|
||||
/// \param[in] num_ops - integer representing the number of OPs to be selected and applied.
|
||||
/// \return Shared pointer to the current TensorOperation.
|
||||
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> operations,
|
||||
std::shared_ptr<UniformAugOperation> UniformAugment(std::vector<std::shared_ptr<TensorOperation>> transforms,
|
||||
int32_t num_ops = 2);
|
||||
|
||||
/// \brief Function to create a RandomHorizontalFlip TensorOperation.
|
||||
|
@ -264,7 +264,7 @@ class CenterCropOperation : public TensorOperation {
|
|||
|
||||
class UniformAugOperation : public TensorOperation {
|
||||
public:
|
||||
explicit UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> operations, int32_t num_ops = 2);
|
||||
explicit UniformAugOperation(std::vector<std::shared_ptr<TensorOperation>> transforms, int32_t num_ops = 2);
|
||||
|
||||
~UniformAugOperation() = default;
|
||||
|
||||
|
@ -273,7 +273,7 @@ class UniformAugOperation : public TensorOperation {
|
|||
bool ValidateParams() override;
|
||||
|
||||
private:
|
||||
std::vector<std::shared_ptr<TensorOperation>> operations_;
|
||||
std::vector<std::shared_ptr<TensorOperation>> transforms_;
|
||||
int32_t num_ops_;
|
||||
};
|
||||
|
||||
|
|
|
@ -722,7 +722,7 @@ class UniformAugment(cde.UniformAugOp):
|
|||
Tensor operation to perform randomly selected augmentation.
|
||||
|
||||
Args:
|
||||
operations: list of C++ operations (python OPs are not accepted).
|
||||
transforms: list of C++ operations (python OPs are not accepted).
|
||||
num_ops (int, optional): number of OPs to be selected and applied (default=2).
|
||||
|
||||
Examples:
|
||||
|
@ -730,7 +730,7 @@ class UniformAugment(cde.UniformAugOp):
|
|||
>>> c_transforms.RandomVerticalFlip(),
|
||||
>>> c_transforms.RandomColorAdjust(),
|
||||
>>> c_transforms.RandomRotation(degrees=45)]
|
||||
>>> uni_aug = c_transforms.UniformAugment(operations=transforms_list, num_ops=2)
|
||||
>>> uni_aug = c_transforms.UniformAugment(transforms=transforms_list, num_ops=2)
|
||||
>>> transforms_all = [c_transforms.Decode(), c_transforms.Resize(size=[224, 224]),
|
||||
>>> uni_aug, F.ToTensor()]
|
||||
>>> ds_ua = ds.map(input_columns="image",
|
||||
|
@ -738,10 +738,10 @@ class UniformAugment(cde.UniformAugOp):
|
|||
"""
|
||||
|
||||
@check_uniform_augment_cpp
|
||||
def __init__(self, operations, num_ops=2):
|
||||
self.operations = operations
|
||||
def __init__(self, transforms, num_ops=2):
|
||||
self.transforms = transforms
|
||||
self.num_ops = num_ops
|
||||
super().__init__(operations, num_ops)
|
||||
super().__init__(transforms, num_ops)
|
||||
|
||||
|
||||
class RandomSelectSubpolicy(cde.RandomSelectSubpolicyOp):
|
||||
|
|
|
@ -33,7 +33,7 @@ from .validators import check_prob, check_crop, check_resize_interpolation, chec
|
|||
check_normalize_py, check_random_crop, check_random_color_adjust, check_random_rotation, \
|
||||
check_transforms_list, check_random_apply, check_ten_crop, check_num_channels, check_pad, \
|
||||
check_random_perspective, check_random_erasing, check_cutout, check_linear_transform, check_random_affine, \
|
||||
check_mix_up, check_positive_degrees, check_uniform_augment_py, check_compose_list
|
||||
check_mix_up, check_positive_degrees, check_uniform_augment_py, check_compose_list, check_auto_contrast
|
||||
from .utils import Inter, Border
|
||||
|
||||
DE_PY_INTER_MODE = {Inter.NEAREST: Image.NEAREST,
|
||||
|
@ -1361,6 +1361,10 @@ class AutoContrast:
|
|||
"""
|
||||
Automatically maximize the contrast of the input PIL image.
|
||||
|
||||
Args:
|
||||
cutoff (float, optional): Percent of pixels to cut off from the histogram (default=0.0).
|
||||
ignore (int or sequence, optional): Pixel values to ignore (default=None).
|
||||
|
||||
Examples:
|
||||
>>> py_transforms.ComposeOp([py_transforms.Decode(),
|
||||
>>> py_transforms.AutoContrast(),
|
||||
|
@ -1368,6 +1372,11 @@ class AutoContrast:
|
|||
|
||||
"""
|
||||
|
||||
@check_auto_contrast
|
||||
def __init__(self, cutoff=0.0, ignore=None):
|
||||
self.cutoff = cutoff
|
||||
self.ignore = ignore
|
||||
|
||||
def __call__(self, img):
|
||||
"""
|
||||
Call method.
|
||||
|
@ -1379,7 +1388,7 @@ class AutoContrast:
|
|||
img (PIL Image), Augmented image.
|
||||
"""
|
||||
|
||||
return util.auto_contrast(img)
|
||||
return util.auto_contrast(img, self.cutoff, self.ignore)
|
||||
|
||||
|
||||
class Invert:
|
||||
|
|
|
@ -1457,13 +1457,15 @@ def random_sharpness(img, degrees):
|
|||
return ImageEnhance.Sharpness(img).enhance(v)
|
||||
|
||||
|
||||
def auto_contrast(img):
|
||||
def auto_contrast(img, cutoff, ignore):
|
||||
|
||||
"""
|
||||
Automatically maximize the contrast of the input PIL image.
|
||||
|
||||
Args:
|
||||
img (PIL Image): Image to be augmented with AutoContrast.
|
||||
cutoff (float, optional): Percent of pixels to cut off from the histogram (default=0.0).
|
||||
ignore (int or sequence, optional): Pixel values to ignore (default=None).
|
||||
|
||||
Returns:
|
||||
img (PIL Image), Augmented image.
|
||||
|
@ -1473,7 +1475,7 @@ def auto_contrast(img):
|
|||
if not is_pil(img):
|
||||
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
|
||||
|
||||
return ImageOps.autocontrast(img)
|
||||
return ImageOps.autocontrast(img, cutoff, ignore)
|
||||
|
||||
|
||||
def invert_color(img):
|
||||
|
|
|
@ -506,13 +506,13 @@ def check_uniform_augment_cpp(method):
|
|||
|
||||
@wraps(method)
|
||||
def new_method(self, *args, **kwargs):
|
||||
[operations, num_ops], _ = parse_user_args(method, *args, **kwargs)
|
||||
[transforms, num_ops], _ = parse_user_args(method, *args, **kwargs)
|
||||
type_check(num_ops, (int,), "num_ops")
|
||||
check_positive(num_ops, "num_ops")
|
||||
|
||||
if num_ops > len(operations):
|
||||
raise ValueError("num_ops is greater than operations list size")
|
||||
type_check_list(operations, (TensorOp,), "tensor_ops")
|
||||
if num_ops > len(transforms):
|
||||
raise ValueError("num_ops is greater than transforms list size")
|
||||
type_check_list(transforms, (TensorOp,), "tensor_ops")
|
||||
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
|
|
Binary file not shown.
Binary file not shown.
|
@ -58,7 +58,7 @@ def test_auto_contrast_py(plot=False):
|
|||
|
||||
transforms_auto_contrast = F.ComposeOp([F.Decode(),
|
||||
F.Resize((224, 224)),
|
||||
F.AutoContrast(),
|
||||
F.AutoContrast(cutoff=10.0, ignore=[10, 20]),
|
||||
F.ToTensor()])
|
||||
|
||||
ds_auto_contrast = ds.map(input_columns="image",
|
||||
|
@ -99,8 +99,8 @@ def test_auto_contrast_c(plot=False):
|
|||
ds = ds.map(input_columns=["image"],
|
||||
operations=[C.Decode(),
|
||||
C.Resize((224, 224))])
|
||||
python_op = F.AutoContrast()
|
||||
c_op = C.AutoContrast()
|
||||
python_op = F.AutoContrast(cutoff=10.0, ignore=[10, 20])
|
||||
c_op = C.AutoContrast(cutoff=10.0, ignore=[10, 20])
|
||||
transforms_op = F.ComposeOp([lambda img: F.ToPIL()(img.astype(np.uint8)),
|
||||
python_op,
|
||||
np.array])()
|
||||
|
@ -143,6 +143,10 @@ def test_auto_contrast_c(plot=False):
|
|||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
np.testing.assert_equal(np.mean(mse), 0.0)
|
||||
|
||||
# Compare with expected md5 from images
|
||||
filename = "autcontrast_01_result_c.npz"
|
||||
save_and_check_md5(ds_auto_contrast_c, filename, generate_golden=GENERATE_GOLDEN)
|
||||
|
||||
if plot:
|
||||
visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
|
||||
|
||||
|
@ -209,11 +213,11 @@ def test_auto_contrast_one_channel_c(plot=False):
|
|||
visualize_list(images_auto_contrast_c, images_auto_contrast_py, visualize_mode=2)
|
||||
|
||||
|
||||
def test_auto_contrast_invalid_input_c():
|
||||
def test_auto_contrast_invalid_ignore_param_c():
|
||||
"""
|
||||
Test AutoContrast C Op with invalid params
|
||||
Test AutoContrast C Op with invalid ignore parameter
|
||||
"""
|
||||
logger.info("Test AutoContrast C Op with invalid params")
|
||||
logger.info("Test AutoContrast C Op with invalid ignore parameter")
|
||||
try:
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
ds = ds.map(input_columns=["image"],
|
||||
|
@ -226,10 +230,110 @@ def test_auto_contrast_invalid_input_c():
|
|||
except TypeError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Argument ignore with value 255.5 is not of type" in str(error)
|
||||
try:
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
ds = ds.map(input_columns=["image"],
|
||||
operations=[C.Decode(),
|
||||
C.Resize((224, 224)),
|
||||
lambda img: np.array(img[:, :, 0])])
|
||||
# invalid ignore
|
||||
ds = ds.map(input_columns="image",
|
||||
operations=C.AutoContrast(ignore=(10, 100)))
|
||||
except TypeError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Argument ignore with value (10,100) is not of type" in str(error)
|
||||
|
||||
|
||||
def test_auto_contrast_invalid_cutoff_param_c():
|
||||
"""
|
||||
Test AutoContrast C Op with invalid cutoff parameter
|
||||
"""
|
||||
logger.info("Test AutoContrast C Op with invalid cutoff parameter")
|
||||
try:
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
ds = ds.map(input_columns=["image"],
|
||||
operations=[C.Decode(),
|
||||
C.Resize((224, 224)),
|
||||
lambda img: np.array(img[:, :, 0])])
|
||||
# invalid ignore
|
||||
ds = ds.map(input_columns="image",
|
||||
operations=C.AutoContrast(cutoff=-10.0))
|
||||
except ValueError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
|
||||
try:
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
ds = ds.map(input_columns=["image"],
|
||||
operations=[C.Decode(),
|
||||
C.Resize((224, 224)),
|
||||
lambda img: np.array(img[:, :, 0])])
|
||||
# invalid ignore
|
||||
ds = ds.map(input_columns="image",
|
||||
operations=C.AutoContrast(cutoff=120.0))
|
||||
except ValueError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
|
||||
|
||||
|
||||
def test_auto_contrast_invalid_ignore_param_py():
|
||||
"""
|
||||
Test AutoContrast python Op with invalid ignore parameter
|
||||
"""
|
||||
logger.info("Test AutoContrast python Op with invalid ignore parameter")
|
||||
try:
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
ds = ds.map(input_columns=["image"],
|
||||
operations=[F.ComposeOp([F.Decode(),
|
||||
F.Resize((224, 224)),
|
||||
F.AutoContrast(ignore=255.5),
|
||||
F.ToTensor()])])
|
||||
except TypeError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Argument ignore with value 255.5 is not of type" in str(error)
|
||||
try:
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
ds = ds.map(input_columns=["image"],
|
||||
operations=[F.ComposeOp([F.Decode(),
|
||||
F.Resize((224, 224)),
|
||||
F.AutoContrast(ignore=(10, 100)),
|
||||
F.ToTensor()])])
|
||||
except TypeError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Argument ignore with value (10,100) is not of type" in str(error)
|
||||
|
||||
|
||||
def test_auto_contrast_invalid_cutoff_param_py():
|
||||
"""
|
||||
Test AutoContrast python Op with invalid cutoff parameter
|
||||
"""
|
||||
logger.info("Test AutoContrast python Op with invalid cutoff parameter")
|
||||
try:
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
ds = ds.map(input_columns=["image"],
|
||||
operations=[F.ComposeOp([F.Decode(),
|
||||
F.Resize((224, 224)),
|
||||
F.AutoContrast(cutoff=-10.0),
|
||||
F.ToTensor()])])
|
||||
except ValueError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
|
||||
try:
|
||||
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
|
||||
ds = ds.map(input_columns=["image"],
|
||||
operations=[F.ComposeOp([F.Decode(),
|
||||
F.Resize((224, 224)),
|
||||
F.AutoContrast(cutoff=120.0),
|
||||
F.ToTensor()])])
|
||||
except ValueError as error:
|
||||
logger.info("Got an exception in DE: {}".format(str(error)))
|
||||
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_auto_contrast_py(plot=True)
|
||||
test_auto_contrast_c(plot=True)
|
||||
test_auto_contrast_one_channel_c(plot=True)
|
||||
test_auto_contrast_invalid_input_c()
|
||||
test_auto_contrast_invalid_ignore_param_c()
|
||||
test_auto_contrast_invalid_ignore_param_py()
|
||||
test_auto_contrast_invalid_cutoff_param_c()
|
||||
test_auto_contrast_invalid_cutoff_param_py()
|
||||
|
|
|
@ -124,7 +124,7 @@ def test_cpp_uniform_augment(plot=False, num_ops=2):
|
|||
C.RandomColorAdjust(),
|
||||
C.RandomRotation(degrees=45)]
|
||||
|
||||
uni_aug = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
|
||||
uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
|
||||
|
||||
transforms_all = [C.Decode(), C.Resize(size=[224, 224]),
|
||||
uni_aug,
|
||||
|
@ -166,7 +166,7 @@ def test_cpp_uniform_augment_exception_pyops(num_ops=2):
|
|||
F.Invert()]
|
||||
|
||||
with pytest.raises(TypeError) as e:
|
||||
C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
|
||||
C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
|
||||
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
assert "Argument tensor_ops[5] with value" \
|
||||
|
@ -187,7 +187,7 @@ def test_cpp_uniform_augment_exception_large_numops(num_ops=6):
|
|||
C.RandomRotation(degrees=45)]
|
||||
|
||||
try:
|
||||
_ = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
|
||||
_ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
|
||||
|
||||
except Exception as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
|
@ -207,7 +207,7 @@ def test_cpp_uniform_augment_exception_nonpositive_numops(num_ops=0):
|
|||
C.RandomRotation(degrees=45)]
|
||||
|
||||
try:
|
||||
_ = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
|
||||
_ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
|
||||
|
||||
except Exception as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
|
@ -227,7 +227,7 @@ def test_cpp_uniform_augment_exception_float_numops(num_ops=2.5):
|
|||
C.RandomRotation(degrees=45)]
|
||||
|
||||
try:
|
||||
_ = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
|
||||
_ = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
|
||||
|
||||
except Exception as e:
|
||||
logger.info("Got an exception in DE: {}".format(str(e)))
|
||||
|
@ -248,7 +248,7 @@ def test_cpp_uniform_augment_random_crop_badinput(num_ops=1):
|
|||
C.RandomCrop(size=[224, 224]),
|
||||
C.RandomHorizontalFlip()
|
||||
]
|
||||
uni_aug = C.UniformAugment(operations=transforms_ua, num_ops=num_ops)
|
||||
uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
|
||||
ds1 = ds1.map(input_columns="image", operations=uni_aug)
|
||||
|
||||
# apply DatasetOps
|
||||
|
|
Loading…
Reference in New Issue