forked from mindspore-Ecosystem/mindspore
add wide and deep model
This commit is contained in:
parent
fb7e4eac76
commit
c7d0a13d58
|
@ -0,0 +1,311 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""wide and deep model"""
|
||||
from mindspore import nn
|
||||
from mindspore import Tensor, Parameter, ParameterTuple
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
# from mindspore.nn import Dropout
|
||||
from mindspore.nn.optim import Adam, FTRL
|
||||
# from mindspore.nn.metrics import Metric
|
||||
from mindspore.common.initializer import Uniform, initializer
|
||||
# from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||
import numpy as np
|
||||
|
||||
np_type = np.float32
|
||||
ms_type = mstype.float32
|
||||
|
||||
|
||||
def init_method(method, shape, name, max_val=1.0):
|
||||
'''
|
||||
parameter init method
|
||||
'''
|
||||
if method in ['uniform']:
|
||||
params = Parameter(initializer(
|
||||
Uniform(max_val), shape, ms_type), name=name)
|
||||
elif method == "one":
|
||||
params = Parameter(initializer("ones", shape, ms_type), name=name)
|
||||
elif method == 'zero':
|
||||
params = Parameter(initializer("zeros", shape, ms_type), name=name)
|
||||
elif method == "normal":
|
||||
params = Parameter(Tensor(np.random.normal(
|
||||
loc=0.0, scale=0.01, size=shape).astype(dtype=np_type)), name=name)
|
||||
return params
|
||||
|
||||
|
||||
def init_var_dict(init_args, in_vars):
|
||||
'''
|
||||
var init function
|
||||
'''
|
||||
var_map = {}
|
||||
_, _max_val = init_args
|
||||
for _, iterm in enumerate(in_vars):
|
||||
key, shape, method = iterm
|
||||
if key not in var_map.keys():
|
||||
if method in ['random', 'uniform']:
|
||||
var_map[key] = Parameter(initializer(
|
||||
Uniform(_max_val), shape, ms_type), name=key)
|
||||
elif method == "one":
|
||||
var_map[key] = Parameter(initializer(
|
||||
"ones", shape, ms_type), name=key)
|
||||
elif method == "zero":
|
||||
var_map[key] = Parameter(initializer(
|
||||
"zeros", shape, ms_type), name=key)
|
||||
elif method == 'normal':
|
||||
var_map[key] = Parameter(Tensor(np.random.normal(
|
||||
loc=0.0, scale=0.01, size=shape).astype(dtype=np_type)), name=key)
|
||||
return var_map
|
||||
|
||||
|
||||
class DenseLayer(nn.Cell):
|
||||
"""
|
||||
Dense Layer for Deep Layer of WideDeep Model;
|
||||
Containing: activation, matmul, bias_add;
|
||||
Args:
|
||||
"""
|
||||
|
||||
def __init__(self, input_dim, output_dim, weight_bias_init, act_str,
|
||||
keep_prob=0.7, scale_coef=1.0, convert_dtype=True):
|
||||
super(DenseLayer, self).__init__()
|
||||
weight_init, bias_init = weight_bias_init
|
||||
self.weight = init_method(
|
||||
weight_init, [input_dim, output_dim], name="weight")
|
||||
self.bias = init_method(bias_init, [output_dim], name="bias")
|
||||
self.act_func = self._init_activation(act_str)
|
||||
self.matmul = P.MatMul(transpose_b=False)
|
||||
self.bias_add = P.BiasAdd()
|
||||
self.cast = P.Cast()
|
||||
#self.dropout = Dropout(keep_prob=keep_prob)
|
||||
self.mul = P.Mul()
|
||||
self.realDiv = P.RealDiv()
|
||||
self.scale_coef = scale_coef
|
||||
self.convert_dtype = convert_dtype
|
||||
|
||||
def _init_activation(self, act_str):
|
||||
act_str = act_str.lower()
|
||||
if act_str == "relu":
|
||||
act_func = P.ReLU()
|
||||
elif act_str == "sigmoid":
|
||||
act_func = P.Sigmoid()
|
||||
elif act_str == "tanh":
|
||||
act_func = P.Tanh()
|
||||
return act_func
|
||||
|
||||
def construct(self, x):
|
||||
x = self.act_func(x)
|
||||
# if self.training:
|
||||
# x = self.dropout(x)
|
||||
x = self.mul(x, self.scale_coef)
|
||||
if self.convert_dtype:
|
||||
x = self.cast(x, mstype.float16)
|
||||
weight = self.cast(self.weight, mstype.float16)
|
||||
wx = self.matmul(x, weight)
|
||||
wx = self.cast(wx, mstype.float32)
|
||||
else:
|
||||
wx = self.matmul(x, self.weight)
|
||||
wx = self.realDiv(wx, self.scale_coef)
|
||||
output = self.bias_add(wx, self.bias)
|
||||
return output
|
||||
|
||||
|
||||
class WideDeepModel(nn.Cell):
|
||||
"""
|
||||
From paper: " Wide & Deep Learning for Recommender Systems"
|
||||
Args:
|
||||
config (Class): The default config of Wide&Deep
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
super(WideDeepModel, self).__init__()
|
||||
self.batch_size = config.batch_size
|
||||
self.field_size = config.field_size
|
||||
self.vocab_size = config.vocab_size
|
||||
self.emb_dim = config.emb_dim
|
||||
self.deep_layer_args = config.deep_layer_args
|
||||
self.deep_layer_dims_list, self.deep_layer_act = self.deep_layer_args
|
||||
self.init_args = config.init_args
|
||||
self.weight_init, self.bias_init = config.weight_bias_init
|
||||
self.weight_bias_init = config.weight_bias_init
|
||||
self.emb_init = config.emb_init
|
||||
self.drop_out = config.dropout_flag
|
||||
self.keep_prob = config.keep_prob
|
||||
self.deep_input_dims = self.field_size * self.emb_dim
|
||||
self.layer_dims = self.deep_layer_dims_list + [1]
|
||||
self.all_dim_list = [self.deep_input_dims] + self.layer_dims
|
||||
|
||||
init_acts = [('Wide_w', [self.vocab_size, 1], self.emb_init),
|
||||
('V_l2', [self.vocab_size, self.emb_dim], self.emb_init),
|
||||
('Wide_b', [1], self.emb_init)]
|
||||
var_map = init_var_dict(self.init_args, init_acts)
|
||||
self.wide_w = var_map["Wide_w"]
|
||||
self.wide_b = var_map["Wide_b"]
|
||||
self.embedding_table = var_map["V_l2"]
|
||||
self.dense_layer_1 = DenseLayer(self.all_dim_list[0],
|
||||
self.all_dim_list[1],
|
||||
self.weight_bias_init,
|
||||
self.deep_layer_act, convert_dtype=True)
|
||||
self.dense_layer_2 = DenseLayer(self.all_dim_list[1],
|
||||
self.all_dim_list[2],
|
||||
self.weight_bias_init,
|
||||
self.deep_layer_act, convert_dtype=True)
|
||||
self.dense_layer_3 = DenseLayer(self.all_dim_list[2],
|
||||
self.all_dim_list[3],
|
||||
self.weight_bias_init,
|
||||
self.deep_layer_act, convert_dtype=True)
|
||||
self.dense_layer_4 = DenseLayer(self.all_dim_list[3],
|
||||
self.all_dim_list[4],
|
||||
self.weight_bias_init,
|
||||
self.deep_layer_act, convert_dtype=True)
|
||||
self.dense_layer_5 = DenseLayer(self.all_dim_list[4],
|
||||
self.all_dim_list[5],
|
||||
self.weight_bias_init,
|
||||
self.deep_layer_act, convert_dtype=True)
|
||||
|
||||
self.gather_v2 = P.GatherV2()
|
||||
self.mul = P.Mul()
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
||||
self.reshape = P.Reshape()
|
||||
self.square = P.Square()
|
||||
self.shape = P.Shape()
|
||||
self.tile = P.Tile()
|
||||
self.concat = P.Concat(axis=1)
|
||||
self.cast = P.Cast()
|
||||
|
||||
def construct(self, id_hldr, wt_hldr):
|
||||
"""
|
||||
Args:
|
||||
id_hldr: batch ids;
|
||||
wt_hldr: batch weights;
|
||||
"""
|
||||
mask = self.reshape(wt_hldr, (self.batch_size, self.field_size, 1))
|
||||
# Wide layer
|
||||
wide_id_weight = self.gather_v2(self.wide_w, id_hldr, 0)
|
||||
wx = self.mul(wide_id_weight, mask)
|
||||
wide_out = self.reshape(self.reduce_sum(wx, 1) + self.wide_b, (-1, 1))
|
||||
# Deep layer
|
||||
deep_id_embs = self.gather_v2(self.embedding_table, id_hldr, 0)
|
||||
vx = self.mul(deep_id_embs, mask)
|
||||
deep_in = self.reshape(vx, (-1, self.field_size * self.emb_dim))
|
||||
deep_in = self.dense_layer_1(deep_in)
|
||||
deep_in = self.dense_layer_2(deep_in)
|
||||
deep_in = self.dense_layer_3(deep_in)
|
||||
deep_in = self.dense_layer_4(deep_in)
|
||||
deep_out = self.dense_layer_5(deep_in)
|
||||
out = wide_out + deep_out
|
||||
return out, self.embedding_table
|
||||
|
||||
|
||||
class NetWithLossClass(nn.Cell):
|
||||
|
||||
""""
|
||||
Provide WideDeep training loss through network.
|
||||
Args:
|
||||
network (Cell): The training network
|
||||
config (Class): WideDeep config
|
||||
"""
|
||||
|
||||
def __init__(self, network, config):
|
||||
super(NetWithLossClass, self).__init__(auto_prefix=False)
|
||||
self.network = network
|
||||
self.l2_coef = config.l2_coef
|
||||
self.loss = P.SigmoidCrossEntropyWithLogits()
|
||||
self.square = P.Square()
|
||||
self.reduceMean_false = P.ReduceMean(keep_dims=False)
|
||||
self.reduceSum_false = P.ReduceSum(keep_dims=False)
|
||||
|
||||
def construct(self, batch_ids, batch_wts, label):
|
||||
predict, embedding_table = self.network(batch_ids, batch_wts)
|
||||
log_loss = self.loss(predict, label)
|
||||
wide_loss = self.reduceMean_false(log_loss)
|
||||
l2_loss_v = self.reduceSum_false(self.square(embedding_table)) / 2
|
||||
deep_loss = self.reduceMean_false(log_loss) + self.l2_coef * l2_loss_v
|
||||
|
||||
return wide_loss, deep_loss
|
||||
|
||||
|
||||
class IthOutputCell(nn.Cell):
|
||||
def __init__(self, network, output_index):
|
||||
super(IthOutputCell, self).__init__()
|
||||
self.network = network
|
||||
self.output_index = output_index
|
||||
|
||||
def construct(self, x1, x2, x3):
|
||||
predict = self.network(x1, x2, x3)[self.output_index]
|
||||
return predict
|
||||
|
||||
|
||||
class TrainStepWrap(nn.Cell):
|
||||
"""
|
||||
Encapsulation class of WideDeep network training.
|
||||
Append Adam and FTRL optimizers to the training network after that construct
|
||||
function can be called to create the backward graph.
|
||||
Args:
|
||||
network (Cell): the training network. Note that loss function should have been added.
|
||||
sens (Number): The adjust parameter. Default: 1000.0
|
||||
"""
|
||||
|
||||
def __init__(self, network, sens=1000.0):
|
||||
super(TrainStepWrap, self).__init__()
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
self.trainable_params = network.trainable_params()
|
||||
weights_w = []
|
||||
weights_d = []
|
||||
for params in self.trainable_params:
|
||||
if 'wide' in params.name:
|
||||
weights_w.append(params)
|
||||
else:
|
||||
weights_d.append(params)
|
||||
self.weights_w = ParameterTuple(weights_w)
|
||||
self.weights_d = ParameterTuple(weights_d)
|
||||
self.optimizer_w = FTRL(learning_rate=1e-2, params=self.weights_w,
|
||||
l1=1e-8, l2=1e-8, initial_accum=1.0)
|
||||
self.optimizer_d = Adam(
|
||||
self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens)
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.grad_w = C.GradOperation('grad_w', get_by_list=True,
|
||||
sens_param=True)
|
||||
self.grad_d = C.GradOperation('grad_d', get_by_list=True,
|
||||
sens_param=True)
|
||||
self.sens = sens
|
||||
self.loss_net_w = IthOutputCell(network, output_index=0)
|
||||
self.loss_net_d = IthOutputCell(network, output_index=1)
|
||||
|
||||
def construct(self, batch_ids, batch_wts, label):
|
||||
weights_w = self.weights_w
|
||||
weights_d = self.weights_d
|
||||
loss_w, loss_d = self.network(batch_ids, batch_wts, label)
|
||||
sens_w = P.Fill()(P.DType()(loss_w), P.Shape()(loss_w), self.sens)
|
||||
sens_d = P.Fill()(P.DType()(loss_d), P.Shape()(loss_d), self.sens)
|
||||
grads_w = self.grad_w(self.loss_net_w, weights_w)(batch_ids, batch_wts,
|
||||
label, sens_w)
|
||||
grads_d = self.grad_d(self.loss_net_d, weights_d)(batch_ids, batch_wts,
|
||||
label, sens_d)
|
||||
return F.depend(loss_w, self.optimizer_w(grads_w)), F.depend(loss_d,
|
||||
self.optimizer_d(grads_d))
|
||||
|
||||
|
||||
class PredictWithSigmoid(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(PredictWithSigmoid, self).__init__()
|
||||
self.network = network
|
||||
self.sigmoid = P.Sigmoid()
|
||||
|
||||
def construct(self, batch_ids, batch_wts, labels):
|
||||
logits, _, _, = self.network(batch_ids, batch_wts)
|
||||
pred_probs = self.sigmoid(logits)
|
||||
return logits, pred_probs, labels
|
Loading…
Reference in New Issue