!13517 add check input args for embedinglookup

From: @lianliguang
Reviewed-by: @ginfung,@zh_qh
Signed-off-by: @zh_qh
This commit is contained in:
mindspore-ci-bot 2021-03-18 14:53:06 +08:00 committed by Gitee
commit c75fa654a3
3 changed files with 4 additions and 19 deletions

View File

@ -5017,7 +5017,7 @@ class Sort(PrimitiveWithInfer):
return x_dtype, mstype.tensor_type(mstype.int32)
class EmbeddingLookup(PrimitiveWithInfer):
class EmbeddingLookup(PrimitiveWithCheck):
"""
Returns a slice of input tensor based on the specified indices.
@ -5063,28 +5063,13 @@ class EmbeddingLookup(PrimitiveWithInfer):
self.init_prim_io_names(inputs=['params', 'indices', 'offset'],
outputs=['output'])
def __infer__(self, params, indices, offset):
def __check__(self, params, indices, offset):
validator.check_subclass("params", params['dtype'], mstype.tensor, self.name)
validator.check_tensor_dtype_valid("indices", indices['dtype'], mstype.int_type, self.name)
validator.check_subclass("offset", offset['dtype'], mstype.int_, self.name)
params_shp = params['shape']
if len(params_shp) > 2:
raise ValueError("The dimension of 'params' in EmbeddingLookup must <= 2, but got %d." % len(params_shp))
out_shape = indices['shape'] + params_shp[1:]
if 'max_shape' in indices:
out_max_shape = indices['max_shape'] + params_shp[1:]
else:
out_max_shape = out_shape
if 'min_shape' in indices:
out_min_shape = indices['min_shape'] + params_shp[1:]
else:
out_min_shape = out_shape
out = {'shape': out_shape,
'dtype': params['dtype'],
'value': None,
'max_shape': out_max_shape,
'min_shape': out_min_shape}
return out
class GatherD(PrimitiveWithInfer):

View File

@ -243,7 +243,7 @@ def test():
args = parse_args()
devid = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=True, device_id=devid)
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=False, device_id=devid)
# logger
args.outputs_dir = os.path.join(args.log_path,

View File

@ -134,7 +134,7 @@ def conver_training_shape(args):
def network_init(args):
devid = int(os.getenv('DEVICE_ID', '0'))
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
device_target=args.device_target, save_graphs=True, device_id=devid)
device_target=args.device_target, save_graphs=False, device_id=devid)
# init distributed
if args.is_distributed:
if args.device_target == "Ascend":