!5132 Rectification of API comments

Merge pull request !5132 from byweng/master
This commit is contained in:
mindspore-ci-bot 2020-08-25 20:40:43 +08:00 committed by Gitee
commit c6e481c0ff
7 changed files with 66 additions and 40 deletions

View File

@ -21,13 +21,13 @@ The objective of MDP is to integrate deep learning with Bayesian learning. On th
**Layer 1-2: Probabilistic inference algorithms**
- SVI([mindspore.nn.probability.dpn](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/dpn)): A unified interface for stochastic variational inference.
- SVI([mindspore.nn.probability.infer.variational](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/infer/variational)): A unified interface for stochastic variational inference.
- MC: Algorithms for approximating integrals via sampling.
**Layer 2: Deep Probabilistic Programming (DPP) aims to provide composable BNN modules**
- Layers([mindspore.nn.probability.bnn_layers](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/bnn_layers)): BNN layers, which are used to construct BNN.
- Bnn: A bunch of BNN models that allow to be integrated into DNN;
- Dpn([mindspore.nn.probability.dpn](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/dpn)): A bunch of BNN models that allow to be integrated into DNN;
- Transform([mindspore.nn.probability.transforms](https://gitee.com/mindspore/mindspore/tree/master/mindspore/nn/probability/transforms)): Interfaces for the transformation between BNN and DNN;
- Context: context managers for models and layers.

View File

@ -14,6 +14,7 @@
# ============================================================================
"""Convolutional variational layers."""
from mindspore.ops import operations as P
from mindspore.common.tensor import Tensor
from mindspore._checkparam import twice
from ...layer.conv import _Conv
from ...cell import Cell
@ -79,35 +80,45 @@ class _ConvVariational(_Conv):
self.weight.requires_grad = False
if isinstance(weight_prior_fn, Cell):
if weight_prior_fn.__class__.__name__ != 'NormalPrior':
raise TypeError('The type of `weight_prior_fn` should be `NormalPrior`')
self.weight_prior = weight_prior_fn
else:
if weight_prior_fn.__name__ != 'NormalPrior':
raise TypeError('The type of `weight_prior_fn` should be `NormalPrior`')
self.weight_prior = weight_prior_fn()
for prior_name, prior_dist in self.weight_prior.name_cells().items():
if prior_name != 'normal':
raise TypeError("The type of distribution of `weight_prior_fn` should be `normal`")
if not (isinstance(getattr(prior_dist, '_mean_value'), Tensor) and
isinstance(getattr(prior_dist, '_sd_value'), Tensor)):
raise TypeError("The input form of `weight_prior_fn` is incorrect")
try:
self.weight_posterior = weight_posterior_fn(shape=self.shape, name='bnn_weight')
except TypeError:
raise TypeError('The type of `weight_posterior_fn` should be `NormalPosterior`')
raise TypeError('The input form of `weight_posterior_fn` is incorrect')
for posterior_name, _ in self.weight_posterior.name_cells().items():
if posterior_name != 'normal':
raise TypeError("The type of distribution of `weight_posterior_fn` should be `normal`")
if self.has_bias:
self.bias.requires_grad = False
if isinstance(bias_prior_fn, Cell):
if bias_prior_fn.__class__.__name__ != 'NormalPrior':
raise TypeError('The type of `bias_prior_fn` should be `NormalPrior`')
self.bias_prior = bias_prior_fn
else:
if bias_prior_fn.__name__ != 'NormalPrior':
raise TypeError('The type of `bias_prior_fn` should be `NormalPrior`')
self.bias_prior = bias_prior_fn()
for prior_name, prior_dist in self.bias_prior.name_cells().items():
if prior_name != 'normal':
raise TypeError("The type of distribution of `bias_prior_fn` should be `normal`")
if not (isinstance(getattr(prior_dist, '_mean_value'), Tensor) and
isinstance(getattr(prior_dist, '_sd_value'), Tensor)):
raise TypeError("The input form of `bias_prior_fn` is incorrect")
try:
self.bias_posterior = bias_posterior_fn(shape=[self.out_channels], name='bnn_bias')
except TypeError:
raise TypeError('The type of `bias_posterior_fn` should be `NormalPosterior`')
for posterior_name, _ in self.bias_posterior.name_cells().items():
if posterior_name != 'normal':
raise TypeError("The type of distribution of `bias_posterior_fn` should be `normal`")
# mindspore operations
self.bias_add = P.BiasAdd()
@ -221,16 +232,16 @@ class ConvReparam(_ConvVariational):
normal distribution). The current version only supports NormalPrior.
weight_posterior_fn: posterior distribution for sampling weight.
It should be a function handle which returns a mindspore
distribution instance. Default: NormalPosterior. The current
version only supports NormalPosterior.
distribution instance. Default: lambda name, shape: NormalPosterior(name=name, shape=shape).
The current version only supports normal distribution.
bias_prior_fn: prior distribution for bias vector. It should return
a mindspore distribution. Default: NormalPrior(which creates an
instance of standard normal distribution). The current version
only supports NormalPrior.
only supports normal distribution.
bias_posterior_fn: posterior distribution for sampling bias vector.
It should be a function handle which returns a mindspore
distribution instance. Default: NormalPosterior. The current
version only supports NormalPosterior.
distribution instance. Default: lambda name, shape: NormalPosterior(name=name, shape=shape).
The current version only supports normal distribution.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
@ -238,7 +249,6 @@ class ConvReparam(_ConvVariational):
Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
Examples:
>>> net = ConvReparam(120, 240, 4, has_bias=False)
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)

View File

@ -14,6 +14,7 @@
# ============================================================================
"""dense_variational"""
from mindspore.ops import operations as P
from mindspore.common.tensor import Tensor
from mindspore._checkparam import check_int_positive, check_bool
from ...cell import Cell
from ...layer.activation import get_activation
@ -43,33 +44,43 @@ class _DenseVariational(Cell):
self.has_bias = check_bool(has_bias)
if isinstance(weight_prior_fn, Cell):
if weight_prior_fn.__class__.__name__ != 'NormalPrior':
raise TypeError('The type of `weight_prior_fn` should be `NormalPrior`')
self.weight_prior = weight_prior_fn
else:
if weight_prior_fn.__name__ != 'NormalPrior':
raise TypeError('The type of `weight_prior_fn` should be `NormalPrior`')
self.weight_prior = weight_prior_fn()
for prior_name, prior_dist in self.weight_prior.name_cells().items():
if prior_name != 'normal':
raise TypeError("The type of distribution of `weight_prior_fn` should be `normal`")
if not (isinstance(getattr(prior_dist, '_mean_value'), Tensor) and
isinstance(getattr(prior_dist, '_sd_value'), Tensor)):
raise TypeError("The input form of `weight_prior_fn` is incorrect")
try:
self.weight_posterior = weight_posterior_fn(shape=[self.out_channels, self.in_channels], name='bnn_weight')
except TypeError:
raise TypeError('The type of `weight_posterior_fn` should be `NormalPosterior`')
for posterior_name, _ in self.weight_posterior.name_cells().items():
if posterior_name != 'normal':
raise TypeError("The type of distribution of `weight_posterior_fn` should be `normal`")
if self.has_bias:
if isinstance(bias_prior_fn, Cell):
if bias_prior_fn.__class__.__name__ != 'NormalPrior':
raise TypeError('The type of `bias_prior_fn` should be `NormalPrior`')
self.bias_prior = bias_prior_fn
else:
if bias_prior_fn.__name__ != 'NormalPrior':
raise TypeError('The type of `bias_prior_fn` should be `NormalPrior`')
self.bias_prior = bias_prior_fn()
for prior_name, prior_dist in self.bias_prior.name_cells().items():
if prior_name != 'normal':
raise TypeError("The type of distribution of `bias_prior_fn` should be `normal`")
if not (isinstance(getattr(prior_dist, '_mean_value'), Tensor) and
isinstance(getattr(prior_dist, '_sd_value'), Tensor)):
raise TypeError("The input form of `bias_prior_fn` is incorrect")
try:
self.bias_posterior = bias_posterior_fn(shape=[self.out_channels], name='bnn_bias')
except TypeError:
raise TypeError('The type of `bias_posterior_fn` should be `NormalPosterior`')
for posterior_name, _ in self.bias_posterior.name_cells().items():
if posterior_name != 'normal':
raise TypeError("The type of distribution of `bias_posterior_fn` should be `normal`")
self.activation = activation
if not self.activation:
@ -160,16 +171,16 @@ class DenseReparam(_DenseVariational):
normal distribution). The current version only supports NormalPrior.
weight_posterior_fn: posterior distribution for sampling weight.
It should be a function handle which returns a mindspore
distribution instance. Default: NormalPosterior. The current
version only supports NormalPosterior.
distribution instance. Default: lambda name, shape: NormalPosterior(name=name, shape=shape).
The current version only supports normal distribution.
bias_prior_fn: prior distribution for bias vector. It should return
a mindspore distribution. Default: NormalPrior(which creates an
instance of standard normal distribution). The current version
only supports NormalPrior.
bias_posterior_fn: posterior distribution for sampling bias vector.
It should be a function handle which returns a mindspore
distribution instance. Default: NormalPosterior. The current
version only supports NormalPosterior.
distribution instance. Default: lambda name, shape: NormalPosterior(name=name, shape=shape).
The current version only supports normal distribution.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
@ -180,7 +191,8 @@ class DenseReparam(_DenseVariational):
Examples:
>>> net = DenseReparam(3, 4)
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> net(input)
>>> net(input).shape
(2, 4)
"""
def __init__(

View File

@ -31,8 +31,8 @@ class NormalPrior(Cell):
Args:
dtype (:class:`mindspore.dtype`): The argument is used to define the data type of the output tensor.
Default: mindspore.float32.
mean (int, float): Mean of normal distribution.
std (int, float): Standard deviation of normal distribution.
mean (int, float): Mean of normal distribution. Default: 0.
std (int, float): Standard deviation of normal distribution. Default: 0.1.
Returns:
Cell, a normal distribution.

View File

@ -99,7 +99,7 @@ class ConditionalVAE(Cell):
Randomly sample from latent space to generate sample.
Args:
sample_y (Tensor): Define the label of sample, int tensor, the shape is (generate_nums, ).
sample_y (Tensor): Define the label of sample. Tensor of shape (generate_nums, ) and type mindspore.int32.
generate_nums (int): The number of samples to generate.
shape(tuple): The shape of sample, it should be (generate_nums, C, H, W) or (-1, C, H, W).

View File

@ -68,6 +68,10 @@ class UncertaintyEvaluation:
>>> save_model=False)
>>> epistemic_uncertainty = evaluation.eval_epistemic_uncertainty(eval_data)
>>> aleatoric_uncertainty = evaluation.eval_aleatoric_uncertainty(eval_data)
>>> epistemic_uncertainty.shape
(32, 10)
>>> aleatoric_uncertainty.shape
(32,)
"""
def __init__(self, model, train_dataset, task_type, num_classes=None, epochs=1,

View File

@ -31,8 +31,8 @@ class TransformToBNN:
Args:
trainable_dnn (Cell): A trainable DNN model (backbone) wrapped by TrainOneStepCell.
dnn_factor ((int, float): The coefficient of backbone's loss, which is computed by loss function.
bnn_factor (int, float): The coefficient of kl loss, which is kl divergence of Bayesian layer.
dnn_factor ((int, float): The coefficient of backbone's loss, which is computed by loss function. Default: 1.
bnn_factor (int, float): The coefficient of kl loss, which is kl divergence of Bayesian layer. Default: 1.
Examples:
>>> class Net(nn.Cell):
@ -93,15 +93,15 @@ class TransformToBNN:
Transform the whole DNN model to BNN model, and wrap BNN model by TrainOneStepCell.
Args:
get_dense_args (:class:`function`): The arguments gotten from the DNN full connection layer. Default: lambda dp:
get_dense_args: The arguments gotten from the DNN full connection layer. Default: lambda dp:
{"in_channels": dp.in_channels, "out_channels": dp.out_channels, "has_bias": dp.has_bias}.
get_conv_args (:class:`function`): The arguments gotten from the DNN convolutional layer. Default: lambda dp:
get_conv_args: The arguments gotten from the DNN convolutional layer. Default: lambda dp:
{"in_channels": dp.in_channels, "out_channels": dp.out_channels, "pad_mode": dp.pad_mode,
"kernel_size": dp.kernel_size, "stride": dp.stride, "has_bias": dp.has_bias}.
add_dense_args (dict): The new arguments added to BNN full connection layer. Note that the arguments in
`add_dense_args` should not duplicate arguments in `get_dense_args`. Default: {}.
`add_dense_args` should not duplicate arguments in `get_dense_args`. Default: None.
add_conv_args (dict): The new arguments added to BNN convolutional layer. Note that the arguments in
`add_conv_args` should not duplicate arguments in `get_conv_args`. Default: {}.
`add_conv_args` should not duplicate arguments in `get_conv_args`. Default: None.
Returns:
Cell, a trainable BNN model wrapped by TrainOneStepCell.
@ -142,7 +142,7 @@ class TransformToBNN:
nn.Dense, nn.Conv2d.
bnn_layer_type (Cell): The type of BNN layer to be transformed to. The optional values are
DenseReparam, ConvReparam.
get_args (:class:`function`): The arguments gotten from the DNN layer. Default: None.
get_args: The arguments gotten from the DNN layer. Default: None.
add_args (dict): The new arguments added to BNN layer. Note that the arguments in `add_args` should not
duplicate arguments in `get_args`. Default: None.