use TFRecordDataset in bert ci script and add absolute position embedding code in bert model

This commit is contained in:
yoonlee666 2020-04-08 14:31:18 +08:00
parent 5add5979e8
commit c5bfbc3556
2 changed files with 16 additions and 2 deletions

View File

@ -165,6 +165,7 @@ class EmbeddingPostprocessor(nn.Cell):
def __init__(self,
embedding_size,
embedding_shape,
use_relative_positions=False,
use_token_type=False,
token_type_vocab_size=16,
use_one_hot_embeddings=False,
@ -192,6 +193,13 @@ class EmbeddingPostprocessor(nn.Cell):
self.layernorm = nn.LayerNorm(embedding_size)
self.dropout = nn.Dropout(1 - dropout_prob)
self.gather = P.GatherV2()
self.use_relative_positions = use_relative_positions
self.slice = P.Slice()
self.full_position_embeddings = Parameter(initializer
(TruncatedNormal(initializer_range),
[max_position_embeddings,
embedding_size]),
name='full_position_embeddings')
def construct(self, token_type_ids, word_embeddings):
output = word_embeddings
@ -206,6 +214,11 @@ class EmbeddingPostprocessor(nn.Cell):
token_type_embeddings = self.gather(self.embedding_table, flat_ids, 0)
token_type_embeddings = self.reshape(token_type_embeddings, self.shape)
output += token_type_embeddings
if not self.use_relative_positions:
_, seq, width = self.shape
position_embeddings = self.slice(self.full_position_embeddings, [0, 0], [seq, width])
position_embeddings = self.reshape(position_embeddings, (1, seq, width))
output += position_embeddings
output = self.layernorm(output)
output = self.dropout(output)
return output
@ -853,6 +866,7 @@ class BertModel(nn.Cell):
self.bert_embedding_postprocessor = EmbeddingPostprocessor(
embedding_size=self.embedding_size,
embedding_shape=output_embedding_shape,
use_relative_positions=config.use_relative_positions,
use_token_type=True,
token_type_vocab_size=config.type_vocab_size,
use_one_hot_embeddings=use_one_hot_embeddings,

View File

@ -103,9 +103,9 @@ def me_de_train_dataset():
"""test me de train dataset"""
# apply repeat operations
repeat_count = 1
ds = de.StorageDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
"next_sentence_labels", "masked_lm_positions",
"masked_lm_ids", "masked_lm_weights"])
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op)
ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op)