forked from mindspore-Ecosystem/mindspore
make trace source lines more accurate
This commit is contained in:
parent
249fcbf812
commit
c3eea22ab4
|
@ -44,7 +44,7 @@ CNodePtr DereluFusion::CreateReluV2(const FuncGraphPtr &graph, const CNodePtr &r
|
|||
constexpr auto kMaskShapeSize = 4;
|
||||
auto prim = std::make_shared<Primitive>(kReluV2OpName);
|
||||
std::vector<AnfNodePtr> inputs = {NewValueNode(prim), relu->input(kIndex1)};
|
||||
auto new_node = NewCNode(inputs, graph);
|
||||
auto new_node = opt::NewCNode(inputs, graph, {relu});
|
||||
MS_EXCEPTION_IF_NULL(new_node);
|
||||
new_node->set_scope(relu->scope());
|
||||
|
||||
|
@ -88,7 +88,7 @@ CNodePtr DereluFusion::CreateReluGradV2(const FuncGraphPtr &graph, const CNodePt
|
|||
|
||||
auto prim = std::make_shared<Primitive>(kReluGradV2OpName);
|
||||
std::vector<AnfNodePtr> inputs = {NewValueNode(prim), relu_grad->input(1), second_input};
|
||||
auto new_node = NewCNode(inputs, graph);
|
||||
auto new_node = opt::NewCNode(inputs, graph, {relu_grad});
|
||||
MS_EXCEPTION_IF_NULL(new_node);
|
||||
new_node->set_scope(relu_grad->scope());
|
||||
new_node->set_abstract(relu_grad->abstract());
|
||||
|
|
|
@ -158,7 +158,7 @@ CNodePtr CreateDropoutGenMaskCNode(const FuncGraphPtr &func_graph, const CNodePt
|
|||
dropout_gen_mask_inputs.push_back(shape_value);
|
||||
dropout_gen_mask_inputs.push_back(keep_prob_value);
|
||||
}
|
||||
CNodePtr dropout_gen_mask = NewCNode(dropout_gen_mask_inputs, func_graph);
|
||||
CNodePtr dropout_gen_mask = opt::NewCNode(dropout_gen_mask_inputs, func_graph, {dropout});
|
||||
MS_EXCEPTION_IF_NULL(dropout_gen_mask);
|
||||
|
||||
std::shared_ptr<abstract::AbstractTensor> gen_mask_abstract;
|
||||
|
@ -242,7 +242,7 @@ const AnfNodePtr DropoutAndDropoutGradUnifyMindIR::Process(const FuncGraphPtr &f
|
|||
std::vector<AnfNodePtr> dropout_do_mask1_inputs{
|
||||
NewValueNode(std::make_shared<Primitive>(kDropoutDoMaskOpName)), dropout_input, dropout_gen_mask,
|
||||
keep_prob_value};
|
||||
dropout_do_mask1 = NewCNode(dropout_do_mask1_inputs, func_graph);
|
||||
dropout_do_mask1 = opt::NewCNode(dropout_do_mask1_inputs, func_graph, {dropout_node});
|
||||
MS_EXCEPTION_IF_NULL(dropout_do_mask1);
|
||||
auto do_mask_abstract1 =
|
||||
std::make_shared<abstract::AbstractTensor>(TypeIdToType(inputx_type_id), input_shape);
|
||||
|
@ -262,7 +262,7 @@ const AnfNodePtr DropoutAndDropoutGradUnifyMindIR::Process(const FuncGraphPtr &f
|
|||
auto dropout_grad_input = utils::cast<AnfNodePtr>((*equiv)[grad_input_]);
|
||||
std::vector<AnfNodePtr> dropout_do_mask_inputs{NewValueNode(std::make_shared<Primitive>(kDropoutDoMaskOpName)),
|
||||
dropout_grad_input, dropout_gen_mask, keep_prob_value};
|
||||
auto dropout_do_mask = NewCNode(dropout_do_mask_inputs, func_graph);
|
||||
auto dropout_do_mask = opt::NewCNode(dropout_do_mask_inputs, func_graph, {node});
|
||||
MS_EXCEPTION_IF_NULL(dropout_do_mask);
|
||||
auto do_mask_abstract = std::make_shared<abstract::AbstractTensor>(TypeIdToType(inputx_type_id), input_shape);
|
||||
dropout_do_mask->set_abstract(do_mask_abstract);
|
||||
|
|
|
@ -54,7 +54,7 @@ CNodePtr MaxPool2MaxPoolWithArgmax::CreateMaxPoolWithArgmax(const FuncGraphPtr &
|
|||
}
|
||||
std::vector<AnfNodePtr> maxpool_argmax_inputs = {NewValueNode(std::make_shared<Primitive>(kMaxPoolWithArgmaxOpName)),
|
||||
maxpool->input(kIndex1)};
|
||||
auto maxpool_argmax = NewCNode(maxpool_argmax_inputs, graph);
|
||||
auto maxpool_argmax = opt::NewCNode(maxpool_argmax_inputs, graph, {maxpool});
|
||||
MS_EXCEPTION_IF_NULL(maxpool_argmax);
|
||||
maxpool_argmax->set_scope(maxpool->scope());
|
||||
|
||||
|
@ -81,7 +81,7 @@ CNodePtr MaxPool2MaxPoolWithArgmax::CreateMaxPoolGradWithArgmax(
|
|||
std::vector<AnfNodePtr> maxpool_grad_argmax_inputs = {
|
||||
NewValueNode(std::make_shared<Primitive>(kMaxPoolGradWithArgmaxOpName)), maxpool_grad->input(kIndex1),
|
||||
maxpool_grad->input(kIndex3), maxpool_argmax_outputs[kIndex1]};
|
||||
auto maxpool_grad_argmax = NewCNode(maxpool_grad_argmax_inputs, graph);
|
||||
auto maxpool_grad_argmax = opt::NewCNode(maxpool_grad_argmax_inputs, graph, {maxpool_grad});
|
||||
MS_EXCEPTION_IF_NULL(maxpool_grad_argmax);
|
||||
maxpool_grad_argmax->set_scope(maxpool_grad->scope());
|
||||
maxpool_grad_argmax->set_abstract(maxpool_grad->abstract());
|
||||
|
|
|
@ -42,18 +42,18 @@ constexpr size_t kType32Len = 4;
|
|||
constexpr size_t kType64Len = 8;
|
||||
|
||||
void UpdateDumpFlagAndDebugInfo(const CNodePtr &node, const std::vector<AnfNodePtr> &orig_nodes) {
|
||||
std::vector<AnfNodePtr> orig_real_cnodes;
|
||||
for (auto &orig_node : orig_nodes) {
|
||||
if (!orig_node->isa<CNode>()) {
|
||||
continue;
|
||||
}
|
||||
auto orig_cnode = orig_node->cast<CNodePtr>();
|
||||
if (AnfAlgo::HasNodeAttr(kAttrDump, orig_cnode)) {
|
||||
AnfAlgo::CopyNodeAttr(kAttrDump, orig_cnode, node);
|
||||
break;
|
||||
if (AnfUtils::IsRealCNodeKernel(orig_node)) {
|
||||
auto orig_cnode = orig_node->cast<CNodePtr>();
|
||||
if (AnfAlgo::HasNodeAttr(kAttrDump, orig_cnode)) {
|
||||
AnfAlgo::CopyNodeAttr(kAttrDump, orig_cnode, node);
|
||||
}
|
||||
orig_real_cnodes.push_back(orig_node);
|
||||
}
|
||||
}
|
||||
|
||||
node->AddFusedDebugInfoList(orig_nodes);
|
||||
node->AddFusedDebugInfoList(orig_real_cnodes);
|
||||
}
|
||||
} // namespace
|
||||
|
||||
|
|
Loading…
Reference in New Issue