adding new TCs to six ops and skip md5 case in RandomPerspective

This commit is contained in:
Tinazhang 2020-06-01 15:03:05 -04:00
parent 095e41eff3
commit c3de5c7a54
16 changed files with 973 additions and 43 deletions

Binary file not shown.

View File

@ -141,9 +141,9 @@ def test_crop_grayscale(height=375, width=375):
if __name__ == "__main__":
test_center_crop_op(600, 600, True)
test_center_crop_op(600, 600, plot=True)
test_center_crop_op(300, 600)
test_center_crop_op(600, 300)
test_center_crop_md5()
test_center_crop_comp(True)
test_center_crop_comp(plot=True)
test_crop_grayscale()

View File

@ -12,26 +12,54 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing Normalize op in DE
"""
import numpy as np
import matplotlib.pyplot as plt
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import diff_mse, save_and_check_md5
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def normalize_np(image):
def visualize_mse(image_de_normalized, image_np_normalized, mse, image_original):
"""
visualizes the image using DE op and Numpy op
"""
plt.subplot(141)
plt.imshow(image_original)
plt.title("Original image")
plt.subplot(142)
plt.imshow(image_de_normalized)
plt.title("DE normalized image")
plt.subplot(143)
plt.imshow(image_np_normalized)
plt.title("Numpy normalized image")
plt.subplot(144)
plt.imshow(image_de_normalized - image_np_normalized)
plt.title("Difference image, mse : {}".format(mse))
plt.show()
def normalize_np(image, mean, std):
"""
Apply the normalization
"""
# DE decodes the image in RGB by deafult, hence
# the values here are in RGB
image = np.array(image, np.float32)
image = image - np.array([121.0, 115.0, 100.0])
image = image * (1.0 / np.array([70.0, 68.0, 71.0]))
image = image - np.array(mean)
image = image * (1.0 / np.array(std))
return image
@ -41,7 +69,7 @@ def get_normalized(image_id):
Reads the image using DE ops and then normalizes using Numpy
"""
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
decode_op = c_vision.Decode()
data1 = data1.map(input_columns=["image"], operations=decode_op)
num_iter = 0
for item in data1.create_dict_iterator():
@ -52,15 +80,61 @@ def get_normalized(image_id):
return None
def test_normalize_op():
def util_test_normalize(mean, std, op_type):
"""
Test Normalize
Utility function for testing Normalize. Input arguments are given by other tests
"""
logger.info("Test Normalize")
if op_type == "cpp":
# define map operations
decode_op = c_vision.Decode()
normalize_op = c_vision.Normalize(mean, std)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=normalize_op)
elif op_type == "python":
# define map operations
transforms = [
py_vision.Decode(),
py_vision.ToTensor(),
py_vision.Normalize(mean, std)
]
transform = py_vision.ComposeOp(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
else:
raise ValueError("Wrong parameter value")
return data
def util_test_normalize_grayscale(num_output_channels, mean, std):
"""
Utility function for testing Normalize. Input arguments are given by other tests
"""
transforms = [
py_vision.Decode(),
py_vision.Grayscale(num_output_channels),
py_vision.ToTensor(),
py_vision.Normalize(mean, std)
]
transform = py_vision.ComposeOp(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
return data
def test_normalize_op_c(plot=False):
"""
Test Normalize in cpp transformations
"""
logger.info("Test Normalize in cpp")
mean = [121.0, 115.0, 100.0]
std = [70.0, 68.0, 71.0]
# define map operations
decode_op = vision.Decode()
normalize_op = vision.Normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0])
decode_op = c_vision.Decode()
normalize_op = c_vision.Normalize(mean, std)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
@ -74,36 +148,64 @@ def test_normalize_op():
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image_de_normalized = item1["image"]
image_np_normalized = normalize_np(item2["image"])
diff = image_de_normalized - image_np_normalized
mse = np.sum(np.power(diff, 2))
image_original = item2["image"]
image_np_normalized = normalize_np(image_original, mean, std)
mse = diff_mse(image_de_normalized, image_np_normalized)
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
assert mse < 0.01
# Uncomment these blocks to see visual results
# plt.subplot(131)
# plt.imshow(image_de_normalized)
# plt.title("DE normalize image")
#
# plt.subplot(132)
# plt.imshow(image_np_normalized)
# plt.title("Numpy normalized image")
#
# plt.subplot(133)
# plt.imshow(diff)
# plt.title("Difference image, mse : {}".format(mse))
#
# plt.show()
if plot:
visualize_mse(image_de_normalized, image_np_normalized, mse, image_original)
num_iter += 1
def test_normalize_op_py(plot=False):
"""
Test Normalize in python transformations
"""
logger.info("Test Normalize in python")
mean = [0.475, 0.45, 0.392]
std = [0.275, 0.267, 0.278]
# define map operations
transforms = [
py_vision.Decode(),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
normalize_op = py_vision.Normalize(mean, std)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform())
data1 = data1.map(input_columns=["image"], operations=normalize_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform())
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image_de_normalized = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_np_normalized = (normalize_np(item2["image"].transpose(1, 2, 0), mean, std) * 255).astype(np.uint8)
image_original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
mse = diff_mse(image_de_normalized, image_np_normalized)
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
assert mse < 0.01
if plot:
visualize_mse(image_de_normalized, image_np_normalized, mse, image_original)
num_iter += 1
def test_decode_op():
"""
Test Decode op
"""
logger.info("Test Decode")
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1,
shuffle=False)
# define map operations
decode_op = vision.Decode()
decode_op = c_vision.Decode()
# apply map operations on images
data1 = data1.map(input_columns=["image"], operations=decode_op)
@ -112,22 +214,21 @@ def test_decode_op():
for item in data1.create_dict_iterator():
logger.info("Looping inside iterator {}".format(num_iter))
_ = item["image"]
# plt.subplot(131)
# plt.imshow(image)
# plt.title("DE image")
# plt.show()
num_iter += 1
def test_decode_normalize_op():
"""
Test Decode op followed by Normalize op
"""
logger.info("Test [Decode, Normalize] in one Map")
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image", "label"], num_parallel_workers=1,
shuffle=False)
# define map operations
decode_op = vision.Decode()
normalize_op = vision.Normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0])
decode_op = c_vision.Decode()
normalize_op = c_vision.Normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0])
# apply map operations on images
data1 = data1.map(input_columns=["image"], operations=[decode_op, normalize_op])
@ -136,14 +237,139 @@ def test_decode_normalize_op():
for item in data1.create_dict_iterator():
logger.info("Looping inside iterator {}".format(num_iter))
_ = item["image"]
# plt.subplot(131)
# plt.imshow(image)
# plt.title("DE image")
# plt.show()
num_iter += 1
def test_normalize_md5_01():
"""
Test Normalize with md5 check: valid mean and std
expected to pass
"""
logger.info("test_normalize_md5_01")
data_c = util_test_normalize([121.0, 115.0, 100.0], [70.0, 68.0, 71.0], "cpp")
data_py = util_test_normalize([0.475, 0.45, 0.392], [0.275, 0.267, 0.278], "python")
# check results with md5 comparison
filename1 = "normalize_01_c_result.npz"
filename2 = "normalize_01_py_result.npz"
save_and_check_md5(data_c, filename1, generate_golden=GENERATE_GOLDEN)
save_and_check_md5(data_py, filename2, generate_golden=GENERATE_GOLDEN)
def test_normalize_md5_02():
"""
Test Normalize with md5 check: len(mean)=len(std)=1 with RGB images
expected to pass
"""
logger.info("test_normalize_md5_02")
data_py = util_test_normalize([0.475], [0.275], "python")
# check results with md5 comparison
filename2 = "normalize_02_py_result.npz"
save_and_check_md5(data_py, filename2, generate_golden=GENERATE_GOLDEN)
def test_normalize_exception_unequal_size_c():
"""
Test Normalize in c transformation: len(mean) != len(std)
expected to raise ValueError
"""
logger.info("test_normalize_exception_unequal_size_c")
try:
_ = c_vision.Normalize([100, 250, 125], [50, 50, 75, 75])
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "Length of mean and std must be equal"
def test_normalize_exception_unequal_size_py():
"""
Test Normalize in python transformation: len(mean) != len(std)
expected to raise ValueError
"""
logger.info("test_normalize_exception_unequal_size_py")
try:
_ = py_vision.Normalize([0.50, 0.30, 0.75], [0.18, 0.32, 0.71, 0.72])
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "Length of mean and std must be equal"
def test_normalize_exception_invalid_size_py():
"""
Test Normalize in python transformation: len(mean)=len(std)=2
expected to raise RuntimeError
"""
logger.info("test_normalize_exception_invalid_size_py")
data = util_test_normalize([0.75, 0.25], [0.18, 0.32], "python")
try:
_ = data.create_dict_iterator().get_next()
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Length of mean and std must both be 1 or" in str(e)
def test_normalize_exception_invalid_range_py():
"""
Test Normalize in python transformation: value is not in range [0,1]
expected to raise ValueError
"""
logger.info("test_normalize_exception_invalid_range_py")
try:
_ = py_vision.Normalize([0.75, 1.25, 0.5], [0.1, 0.18, 1.32])
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input is not within the required range" in str(e)
def test_normalize_grayscale_md5_01():
"""
Test Normalize with md5 check: len(mean)=len(std)=1 with 1 channel grayscale images
expected to pass
"""
logger.info("test_normalize_grayscale_md5_01")
data = util_test_normalize_grayscale(1, [0.5], [0.175])
# check results with md5 comparison
filename = "normalize_03_py_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_normalize_grayscale_md5_02():
"""
Test Normalize with md5 check: len(mean)=len(std)=3 with 3 channel grayscale images
expected to pass
"""
logger.info("test_normalize_grayscale_md5_02")
data = util_test_normalize_grayscale(3, [0.5, 0.5, 0.5], [0.175, 0.235, 0.512])
# check results with md5 comparison
filename = "normalize_04_py_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
def test_normalize_grayscale_exception():
"""
Test Normalize: len(mean)=len(std)=3 with 1 channel grayscale images
expected to raise RuntimeError
"""
logger.info("test_normalize_grayscale_exception")
try:
_ = util_test_normalize_grayscale(1, [0.5, 0.5, 0.5], [0.175, 0.235, 0.512])
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input is not within the required range" in str(e)
if __name__ == "__main__":
test_decode_op()
test_decode_normalize_op()
test_normalize_op()
test_normalize_op_c(plot=True)
test_normalize_op_py(plot=True)
test_normalize_md5_01()
test_normalize_md5_02()
test_normalize_exception_unequal_size_c()
test_normalize_exception_unequal_size_py()
test_normalize_exception_invalid_size_py()
test_normalize_exception_invalid_range_py()
test_normalize_grayscale_md5_01()
test_normalize_grayscale_md5_02()
test_normalize_grayscale_exception()

View File

@ -0,0 +1,207 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomAffine op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import visualize, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_random_affine_op(plot=False):
"""
Test RandomAffine in python transformations
"""
logger.info("test_random_affine_op")
# define map operations
transforms1 = [
py_vision.Decode(),
py_vision.RandomAffine(degrees=15, translate=(0.1, 0.1), scale=(0.9, 1.1)),
py_vision.ToTensor()
]
transform1 = py_vision.ComposeOp(transforms1)
transforms2 = [
py_vision.Decode(),
py_vision.ToTensor()
]
transform2 = py_vision.ComposeOp(transforms2)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform2())
image_affine = []
image_original = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_affine.append(image1)
image_original.append(image2)
if plot:
visualize(image_original, image_affine)
def test_random_affine_md5():
"""
Test RandomAffine with md5 comparison
"""
logger.info("test_random_affine_md5")
original_seed = config_get_set_seed(55)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# define map operations
transforms = [
py_vision.Decode(),
py_vision.RandomAffine(degrees=(-5, 15), translate=(0.1, 0.3),
scale=(0.9, 1.1), shear=(-10, 10, -5, 5)),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
# check results with md5 comparison
filename = "random_affine_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers((original_num_parallel_workers))
def test_random_affine_exception_negative_degrees():
"""
Test RandomAffine: input degrees in negative, expected to raise ValueError
"""
logger.info("test_random_affine_exception_negative_degrees")
try:
_ = py_vision.RandomAffine(degrees=-15)
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "If degrees is a single number, it cannot be negative."
def test_random_affine_exception_translation_range():
"""
Test RandomAffine: translation value is not in [0, 1], expected to raise ValueError
"""
logger.info("test_random_affine_exception_translation_range")
try:
_ = py_vision.RandomAffine(degrees=15, translate=(0.1, 1.5))
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "translation values should be between 0 and 1"
def test_random_affine_exception_scale_value():
"""
Test RandomAffine: scale is not positive, expected to raise ValueError
"""
logger.info("test_random_affine_exception_scale_value")
try:
_ = py_vision.RandomAffine(degrees=15, scale=(0.0, 1.1))
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "scale values should be positive"
def test_random_affine_exception_shear_value():
"""
Test RandomAffine: shear is a number but is not positive, expected to raise ValueError
"""
logger.info("test_random_affine_exception_shear_value")
try:
_ = py_vision.RandomAffine(degrees=15, shear=-5)
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "If shear is a single number, it must be positive."
def test_random_affine_exception_degrees_size():
"""
Test RandomAffine: degrees is a list or tuple and its length is not 2,
expected to raise TypeError
"""
logger.info("test_random_affine_exception_degrees_size")
try:
_ = py_vision.RandomAffine(degrees=[15])
except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "If degrees is a sequence, the length must be 2."
def test_random_affine_exception_translate_size():
"""
Test RandomAffine: translate is not list or a tuple of length 2,
expected to raise TypeError
"""
logger.info("test_random_affine_exception_translate_size")
try:
_ = py_vision.RandomAffine(degrees=15, translate=(0.1))
except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "translate should be a list or tuple of length 2."
def test_random_affine_exception_scale_size():
"""
Test RandomAffine: scale is not a list or tuple of length 2,
expected to raise TypeError
"""
logger.info("test_random_affine_exception_scale_size")
try:
_ = py_vision.RandomAffine(degrees=15, scale=(0.5))
except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "scale should be a list or tuple of length 2."
def test_random_affine_exception_shear_size():
"""
Test RandomAffine: shear is not a list or tuple of length 2 or 4,
expected to raise TypeError
"""
logger.info("test_random_affine_exception_shear_size")
try:
_ = py_vision.RandomAffine(degrees=15, shear=(-5, 5, 10))
except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "shear should be a list or tuple and it must be of length 2 or 4."
if __name__ == "__main__":
test_random_affine_op(plot=True)
test_random_affine_md5()
test_random_affine_exception_negative_degrees()
test_random_affine_exception_translation_range()
test_random_affine_exception_scale_value()
test_random_affine_exception_shear_value()
test_random_affine_exception_degrees_size()
test_random_affine_exception_translate_size()
test_random_affine_exception_scale_size()
test_random_affine_exception_shear_size()

View File

@ -0,0 +1,133 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomApply op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import visualize, config_get_set_seed, \
config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_random_apply_op(plot=False):
"""
Test RandomApply in python transformations
"""
logger.info("test_random_apply_op")
# define map operations
transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)]
transforms1 = [
py_vision.Decode(),
py_vision.RandomApply(transforms_list, prob=0.6),
py_vision.ToTensor()
]
transform1 = py_vision.ComposeOp(transforms1)
transforms2 = [
py_vision.Decode(),
py_vision.ToTensor()
]
transform2 = py_vision.ComposeOp(transforms2)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform2())
image_apply = []
image_original = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_apply.append(image1)
image_original.append(image2)
if plot:
visualize(image_original, image_apply)
def test_random_apply_md5():
"""
Test RandomApply op with md5 check
"""
logger.info("test_random_apply_md5")
original_seed = config_get_set_seed(10)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# define map operations
transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)]
transforms = [
py_vision.Decode(),
# Note: using default value "prob=0.5"
py_vision.RandomApply(transforms_list),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
# check results with md5 comparison
filename = "random_apply_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers((original_num_parallel_workers))
def test_random_apply_exception_random_crop_badinput():
"""
Test RandomApply: test invalid input for one of the transform functions,
expected to raise error
"""
logger.info("test_random_apply_exception_random_crop_badinput")
original_seed = config_get_set_seed(200)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# define map operations
transforms_list = [py_vision.Resize([32, 32]),
py_vision.RandomCrop(100), # crop size > image size
py_vision.RandomRotation(30)]
transforms = [
py_vision.Decode(),
py_vision.RandomApply(transforms_list, prob=0.6),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
try:
_ = data.create_dict_iterator().get_next()
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Crop size" in str(e)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
if __name__ == '__main__':
test_random_apply_op(plot=True)
test_random_apply_md5()
test_random_apply_exception_random_crop_badinput()

View File

@ -0,0 +1,136 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomChoice op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import visualize, diff_mse
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_random_choice_op(plot=False):
"""
Test RandomChoice in python transformations
"""
logger.info("test_random_choice_op")
# define map operations
transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)]
transforms1 = [
py_vision.Decode(),
py_vision.RandomChoice(transforms_list),
py_vision.ToTensor()
]
transform1 = py_vision.ComposeOp(transforms1)
transforms2 = [
py_vision.Decode(),
py_vision.ToTensor()
]
transform2 = py_vision.ComposeOp(transforms2)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform2())
image_choice = []
image_original = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_choice.append(image1)
image_original.append(image2)
if plot:
visualize(image_original, image_choice)
def test_random_choice_comp(plot=False):
"""
Test RandomChoice and compare with single CenterCrop results
"""
logger.info("test_random_choice_comp")
# define map operations
transforms_list = [py_vision.CenterCrop(64)]
transforms1 = [
py_vision.Decode(),
py_vision.RandomChoice(transforms_list),
py_vision.ToTensor()
]
transform1 = py_vision.ComposeOp(transforms1)
transforms2 = [
py_vision.Decode(),
py_vision.CenterCrop(64),
py_vision.ToTensor()
]
transform2 = py_vision.ComposeOp(transforms2)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform2())
image_choice = []
image_original = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_choice.append(image1)
image_original.append(image2)
mse = diff_mse(image1, image2)
assert mse == 0
if plot:
visualize(image_original, image_choice)
def test_random_choice_exception_random_crop_badinput():
"""
Test RandomChoice: hit error in RandomCrop with greater crop size,
expected to raise error
"""
logger.info("test_random_choice_exception_random_crop_badinput")
# define map operations
# note: crop size[5000, 5000] > image size[4032, 2268]
transforms_list = [py_vision.RandomCrop(5000)]
transforms = [
py_vision.Decode(),
py_vision.RandomChoice(transforms_list),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
try:
_ = data.create_dict_iterator().get_next()
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Crop size" in str(e)
if __name__ == '__main__':
test_random_choice_op(plot=True)
test_random_choice_comp(plot=True)
test_random_choice_exception_random_crop_badinput()

View File

@ -0,0 +1,100 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomOrder op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import visualize, diff_mse, config_get_set_seed, \
config_get_set_num_parallel_workers, save_and_check_md5
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_random_order_op(plot=False):
"""
Test RandomOrder in python transformations
"""
logger.info("test_random_order_op")
# define map operations
transforms_list = [py_vision.CenterCrop(64), py_vision.RandomRotation(30)]
transforms1 = [
py_vision.Decode(),
py_vision.RandomOrder(transforms_list),
py_vision.ToTensor()
]
transform1 = py_vision.ComposeOp(transforms1)
transforms2 = [
py_vision.Decode(),
py_vision.ToTensor()
]
transform2 = py_vision.ComposeOp(transforms2)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform2())
image_order = []
image_original = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_order.append(image1)
image_original.append(image2)
if plot:
visualize(image_original, image_order)
def test_random_order_md5():
"""
Test RandomOrder op with md5 check
"""
logger.info("test_random_order_md5")
original_seed = config_get_set_seed(8)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# define map operations
transforms_list = [py_vision.RandomCrop(64), py_vision.RandomRotation(30)]
transforms = [
py_vision.Decode(),
py_vision.RandomOrder(transforms_list),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
# check results with md5 comparison
filename = "random_order_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers((original_num_parallel_workers))
if __name__ == '__main__':
test_random_order_op(plot=True)
test_random_order_md5()

View File

@ -0,0 +1,128 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomPerspective op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore.dataset.transforms.vision.utils import Inter
from mindspore import log as logger
from util import visualize, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_random_perspective_op(plot=False):
"""
Test RandomPerspective in python transformations
"""
logger.info("test_random_perspective_op")
# define map operations
transforms1 = [
py_vision.Decode(),
py_vision.RandomPerspective(),
py_vision.ToTensor()
]
transform1 = py_vision.ComposeOp(transforms1)
transforms2 = [
py_vision.Decode(),
py_vision.ToTensor()
]
transform2 = py_vision.ComposeOp(transforms2)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform2())
image_perspective = []
image_original = []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_perspective.append(image1)
image_original.append(image2)
if plot:
visualize(image_original, image_perspective)
def skip_test_random_perspective_md5():
"""
Test RandomPerspective with md5 comparison
"""
logger.info("test_random_perspective_md5")
original_seed = config_get_set_seed(5)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# define map operations
transforms = [
py_vision.Decode(),
py_vision.RandomPerspective(distortion_scale=0.3, prob=0.7,
interpolation=Inter.BILINEAR),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
# check results with md5 comparison
filename = "random_perspective_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers((original_num_parallel_workers))
def test_random_perspective_exception_distortion_scale_range():
"""
Test RandomPerspective: distortion_scale is not in [0, 1], expected to raise ValueError
"""
logger.info("test_random_perspective_exception_distortion_scale_range")
try:
_ = py_vision.RandomPerspective(distortion_scale=1.5)
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "Input is not within the required range"
def test_random_perspective_exception_prob_range():
"""
Test RandomPerspective: prob is not in [0, 1], expected to raise ValueError
"""
logger.info("test_random_perspective_exception_prob_range")
try:
_ = py_vision.RandomPerspective(prob=1.2)
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert str(e) == "Input is not within the required range"
if __name__ == "__main__":
test_random_perspective_op(plot=True)
skip_test_random_perspective_md5()
test_random_perspective_exception_distortion_scale_range()
test_random_perspective_exception_prob_range()