forked from mindspore-Ecosystem/mindspore
parent
97e3db8aca
commit
c246b177a6
|
@ -41,6 +41,7 @@ namespace py = pybind11;
|
|||
const char kBackend[] = "backend";
|
||||
const char kStepParallelGraph[] = "step_parallel";
|
||||
const char kOutput[] = "output";
|
||||
const char kPynativeGraphId[] = "graph_id";
|
||||
|
||||
class InferenceResource;
|
||||
|
||||
|
|
|
@ -68,6 +68,7 @@ static std::shared_ptr<session::SessionBasic> session = nullptr;
|
|||
PynativeExecutorPtr PynativeExecutor::executor_ = nullptr;
|
||||
std::mutex PynativeExecutor::instance_lock_;
|
||||
ResourcePtr PynativeExecutor::resource_;
|
||||
int PynativeExecutor::graph_id_ = 0;
|
||||
|
||||
template <typename... Args>
|
||||
void PynativeExecutorTry(PynativeExecutor *const executor, void (PynativeExecutor::*method)(Args...), Args &&... args) {
|
||||
|
@ -616,7 +617,8 @@ py::object RunOpWithBackendPolicy(MsBackendPolicy backend_policy, const OpExecIn
|
|||
|
||||
ValuePtr PynativeExecutor::GetForwardValue(const OpExecInfoPtr &op_exec_info) {
|
||||
auto id = GetOpId(op_exec_info);
|
||||
auto op = id;
|
||||
int graph_id = resource_->results()[pipeline::kPynativeGraphId].cast<int>();
|
||||
auto op = std::to_string(graph_id) + id;
|
||||
op.append(std::to_string(op_id_map_[id]));
|
||||
auto iter = op_forward_map_.find(op);
|
||||
if (iter != op_forward_map_.end()) {
|
||||
|
@ -709,7 +711,8 @@ void PynativeExecutor::MakeCNode(const OpExecInfoPtr &op_exec_info, const py::ob
|
|||
|
||||
void PynativeExecutor::SaveOpForwardValue(const OpExecInfoPtr &op_exec_info, const ValuePtr &value) {
|
||||
auto id = GetOpId(op_exec_info);
|
||||
auto op = id;
|
||||
int graph_id = resource_->results()[pipeline::kPynativeGraphId].cast<int>();
|
||||
auto op = std::to_string(graph_id) + id;
|
||||
op.append(std::to_string(op_id_map_[id]));
|
||||
auto iter = op_forward_map_.find(op);
|
||||
if (iter != op_forward_map_.end()) {
|
||||
|
@ -942,6 +945,7 @@ void PynativeExecutor::NewGraphInner(const py::object &cell, const py::args &arg
|
|||
if (top_g_ == nullptr) {
|
||||
top_g_ = curr_g_ = g;
|
||||
resource_ = std::make_shared<pipeline::Resource>();
|
||||
resource_->results()[pipeline::kPynativeGraphId] = graph_id_++;
|
||||
cell_resource_map_[cell_id] = resource_;
|
||||
df_builder_ = std::make_shared<FuncGraph>();
|
||||
MS_LOG(DEBUG) << "First new graph" << top_g_.get();
|
||||
|
|
|
@ -130,6 +130,7 @@ class PynativeExecutor : public std::enable_shared_from_this<PynativeExecutor> {
|
|||
static std::shared_ptr<PynativeExecutor> executor_;
|
||||
static std::mutex instance_lock_;
|
||||
static ResourcePtr resource_;
|
||||
static int graph_id_;
|
||||
bool grad_flag_;
|
||||
std::unordered_map<std::string, FuncGraphPtr> graph_map_;
|
||||
std::unordered_map<std::string, FuncGraphPtr> cell_graph_map_;
|
||||
|
|
|
@ -0,0 +1,162 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
This test is used to monitor some features of MindArmour.
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.nn import Cell, WithLossCell, TrainOneStepCell
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
||||
"""weight initial for conv layer"""
|
||||
weight = weight_variable()
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
weight_init=weight, has_bias=False, pad_mode="valid")
|
||||
|
||||
|
||||
def fc_with_initialize(input_channels, out_channels):
|
||||
"""weight initial for fc layer"""
|
||||
weight = weight_variable()
|
||||
bias = weight_variable()
|
||||
return nn.Dense(input_channels, out_channels, weight, bias)
|
||||
|
||||
|
||||
class LeNet(nn.Cell):
|
||||
"""
|
||||
Lenet network
|
||||
Args:
|
||||
num_class (int): Num classes, Default: 10.
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
Examples:
|
||||
>>> LeNet(num_class=10)
|
||||
"""
|
||||
|
||||
def __init__(self, num_class=10):
|
||||
super(LeNet, self).__init__()
|
||||
self.conv1 = conv(1, 6, 5)
|
||||
self.conv2 = conv(6, 16, 5)
|
||||
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
||||
self.fc2 = fc_with_initialize(120, 84)
|
||||
self.fc3 = fc_with_initialize(84, 10)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
||||
|
||||
|
||||
class GradWithSens(Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWithSens, self).__init__()
|
||||
self.grad = GradOperation(name="grad", get_all=False,
|
||||
sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, inputs, weight):
|
||||
gout = self.grad(self.network)(inputs, weight)
|
||||
return gout
|
||||
|
||||
|
||||
class GradWrapWithLoss(Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrapWithLoss, self).__init__()
|
||||
self._grad_all = GradOperation(name="get_all",
|
||||
get_all=True,
|
||||
sens_param=False)
|
||||
self._network = network
|
||||
|
||||
def construct(self, inputs, labels):
|
||||
gout = self._grad_all(self._network)(inputs, labels)
|
||||
return gout[0]
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_grad_values_and_infer_shape():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
inputs_np = np.random.rand(32, 1, 32, 32).astype(np.float32)
|
||||
sens = np.ones((inputs_np.shape[0], 10)).astype(np.float32)
|
||||
inputs_np_2 = np.random.rand(64, 1, 32, 32).astype(np.float32)
|
||||
|
||||
net = LeNet()
|
||||
grad_all = GradWithSens(net)
|
||||
|
||||
grad_out = grad_all(Tensor(inputs_np), Tensor(sens)).asnumpy()
|
||||
out_shape = net(Tensor(inputs_np_2)).asnumpy().shape
|
||||
assert np.any(grad_out != 0), 'grad result can not be all zeros'
|
||||
assert out_shape == (64, 10), 'output shape should be (64, 10)'
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_multi_grads():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
sparse = False
|
||||
inputs_np = np.random.rand(32, 1, 32, 32).astype(np.float32)
|
||||
labels_np = np.random.randint(10, size=32).astype(np.int32)
|
||||
inputs_np_2 = np.random.rand(64, 1, 32, 32).astype(np.float32)
|
||||
labels_np_2 = np.random.randint(10, size=64).astype(np.int32)
|
||||
if not sparse:
|
||||
labels_np = np.eye(10)[labels_np].astype(np.float32)
|
||||
labels_np_2 = np.eye(10)[labels_np_2].astype(np.float32)
|
||||
|
||||
net = LeNet()
|
||||
|
||||
# grad operation
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
|
||||
with_loss_cell = WithLossCell(net, loss_fn)
|
||||
grad_all = GradWrapWithLoss(with_loss_cell)
|
||||
grad_out = grad_all(Tensor(inputs_np), Tensor(labels_np)).asnumpy()
|
||||
assert np.any(grad_out != 0), 'grad result can not be all zeros'
|
||||
|
||||
# train-one-step operation
|
||||
loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse)
|
||||
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
|
||||
0.01, 0.9)
|
||||
loss_net = WithLossCell(net, loss_fn)
|
||||
train_net = TrainOneStepCell(loss_net, optimizer)
|
||||
train_net.set_train()
|
||||
train_net(Tensor(inputs_np_2), Tensor(labels_np_2))
|
Loading…
Reference in New Issue