forked from mindspore-Ecosystem/mindspore
!5038 "padding" support tuple for nn.DepthwiseConv2d.
Merge pull request !5038 from liuxiao93/fix-DepthwiseConv2d
This commit is contained in:
commit
c165a6d020
|
@ -68,6 +68,7 @@ class _Conv(Cell):
|
|||
self.group = check_int_positive(group)
|
||||
self.has_bias = has_bias
|
||||
if (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
|
||||
isinstance(kernel_size[0], bool) or isinstance(kernel_size[1], bool) or \
|
||||
kernel_size[0] < 1 or kernel_size[1] < 1:
|
||||
raise ValueError("Attr 'kernel_size' of 'Conv2D' Op passed "
|
||||
+ str(self.kernel_size) + ", should be a int or tuple and equal to or greater than 1.")
|
||||
|
@ -76,9 +77,9 @@ class _Conv(Cell):
|
|||
raise ValueError("Attr 'stride' of 'Conv2D' Op passed "
|
||||
+ str(self.stride) + ", should be a int or tuple and equal to or greater than 1.")
|
||||
if (not isinstance(dilation[0], int)) or (not isinstance(dilation[1], int)) or \
|
||||
dilation[0] < 1 or dilation[1] < 1:
|
||||
isinstance(dilation[0], bool) or isinstance(dilation[1], bool) or dilation[0] < 1 or dilation[1] < 1:
|
||||
raise ValueError("Attr 'dilation' of 'Conv2D' Op passed "
|
||||
+ str(self.dilation) + ", should equal to or greater than 1.")
|
||||
+ str(self.dilation) + ", should be a int or tuple and equal to or greater than 1.")
|
||||
if in_channels % group != 0:
|
||||
raise ValueError("Attr 'in_channels' of 'Conv2D' Op must be divisible by "
|
||||
"attr 'group' of 'Conv2D' Op.")
|
||||
|
@ -845,7 +846,10 @@ class DepthwiseConv2d(Cell):
|
|||
- pad: Implicit paddings on both sides of the input. The number of `padding` will be padded to the input
|
||||
Tensor borders. `padding` should be greater than or equal to 0.
|
||||
|
||||
padding (int): Implicit paddings on both sides of the input. Default: 0.
|
||||
padding (Union[int, tuple[int]]): Implicit paddings on both sides of the input. If `padding` is one integer,
|
||||
the padding of top, bottom, left and right is the same, equal to padding. If `padding` is a tuple
|
||||
with four integers, the padding of top, bottom, left and right will be equal to padding[0],
|
||||
padding[1], padding[2], and padding[3] accordingly. Default: 0.
|
||||
dilation (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the dilation rate
|
||||
to use for dilated convolution. If set to be :math:`k > 1`, there will
|
||||
be :math:`k - 1` pixels skipped for each sampling location. Its value should
|
||||
|
@ -892,11 +896,14 @@ class DepthwiseConv2d(Cell):
|
|||
self.in_channels = check_int_positive(in_channels)
|
||||
self.out_channels = check_int_positive(out_channels)
|
||||
self.pad_mode = pad_mode
|
||||
self.padding = padding
|
||||
self.dilation = dilation
|
||||
self.has_bias = has_bias
|
||||
self.weight_init = weight_init
|
||||
self.bias_init = bias_init
|
||||
Validator.check_value_type('padding', padding, (int, tuple), self.cls_name)
|
||||
if isinstance(padding, tuple):
|
||||
Validator.check_integer('padding size', len(padding), 4, Rel.EQ, self.cls_name)
|
||||
self.padding = padding
|
||||
self.conv = P.DepthwiseConv2dNative(channel_multiplier=1,
|
||||
kernel_size=self.kernel_size,
|
||||
pad_mode=self.pad_mode,
|
||||
|
|
|
@ -983,7 +983,9 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
|||
mode (int): 0 Math convolution, 1 cross-correlation convolution ,
|
||||
2 deconvolution, 3 depthwise convolution. Default: 3.
|
||||
pad_mode (str): "valid", "same", "pad" the mode to fill padding. Default: "valid".
|
||||
pad (int): The pad value to fill. Default: 0.
|
||||
pad (Union[int, tuple[int]]): The pad value to fill. Default: 0. If `pad` is one integer, the padding of
|
||||
top, bottom, left and right is same, equal to pad. If `pad` is tuple with four integer, the padding
|
||||
of top, bottom, left and right equal to pad[0], pad[1], pad[2], pad[3] with corresponding.
|
||||
stride (Union[int, tuple[int]]): The stride to apply conv filter. Default: 1.
|
||||
dilation (Union[int, tuple[int]]): Specifies the dilation rate to use for dilated convolution. Default: 1.
|
||||
group (int): Splits input into groups. Default: 1.
|
||||
|
@ -1028,9 +1030,18 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
|||
raise ValueError("The height and width of dilation should be equal,"
|
||||
f"but got height:{self.dilation[0]}, width:{self.dilation[1]}")
|
||||
self.add_prim_attr('dilation', (1, 1, self.dilation[0], self.dilation[1]))
|
||||
validator.check_value_type('pad', pad, (int,), self.name)
|
||||
validator.check_value_type('pad', pad, (int, tuple), self.name)
|
||||
if isinstance(pad, int):
|
||||
pad = (pad,) * 4
|
||||
else:
|
||||
validator.check_integer('pad size', len(pad), 4, Rel.EQ, self.name)
|
||||
self.padding = pad
|
||||
self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'], self.name)
|
||||
self.pad = validator.check_pad_value_by_mode(pad_mode, pad, self.name)
|
||||
if pad_mode != 'pad' and pad != (0, 0, 0, 0):
|
||||
raise ValueError(f"For '{self.name}', padding must be zero when pad_mode is '{pad_mode}'.")
|
||||
if self.pad_mode == 'pad':
|
||||
for item in pad:
|
||||
validator.check_integer('pad item', item, 0, Rel.GE, self.name)
|
||||
self.mode = validator.check_integer("mode", mode, 3, Rel.EQ, self.name)
|
||||
self.add_prim_attr('data_format', "NCHW")
|
||||
self.channel_multiplier = validator.check_integer("channel_multiplier", channel_multiplier, 0, Rel.GT,
|
||||
|
@ -1065,11 +1076,11 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
|
|||
pad_left = math.floor(pad_needed_w / 2)
|
||||
pad_right = pad_needed_w - pad_left
|
||||
elif self.pad_mode == 'pad':
|
||||
pad_top, pad_bottom, pad_left, pad_right = self.pad, self.pad, self.pad, self.pad
|
||||
pad_top, pad_bottom, pad_left, pad_right = self.padding
|
||||
|
||||
h_out = 1 + (x_shape[2] + 2 * self.pad - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \
|
||||
h_out = 1 + (x_shape[2] + pad_top + pad_bottom - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \
|
||||
/ stride_h
|
||||
w_out = 1 + (x_shape[3] + 2 * self.pad - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \
|
||||
w_out = 1 + (x_shape[3] + pad_left + pad_right - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \
|
||||
/ stride_w
|
||||
h_out = math.floor(h_out)
|
||||
w_out = math.floor(w_out)
|
||||
|
|
Loading…
Reference in New Issue